Nuprl Lemma : mset_sum_comm

s:DSet. Comm(MSet{s};λa,b. (a b))


Proof




Definitions occuring in Statement :  mset_sum: b mset: MSet{s} comm: Comm(T;op) all: x:A. B[x] lambda: λx.A[x] dset: DSet
Definitions unfolded in proof :  comm: Comm(T;op) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T infix_ap: y mset_sum: b mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  mset_wf dset_wf quotient-member-eq list_wf set_car_wf permr_wf permr_equiv_rel append_wf permr_functionality_wrt_permr permr_weakening append_functionality_wrt_permr permr_inversion append_comm
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt isect_memberFormation_alt introduction cut hypothesis inhabitedIsType hypothesisEquality sqequalHypSubstitution isect_memberEquality_alt isectElimination thin axiomEquality isectIsTypeImplies universeIsType extract_by_obid dependent_functionElimination pointwiseFunctionalityForEquality pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry rename setElimination because_Cache lambdaEquality_alt independent_isectElimination independent_functionElimination equalityIstype productIsType sqequalBase

Latex:
\mforall{}s:DSet.  Comm(MSet\{s\};\mlambda{}a,b.  (a  +  b))



Date html generated: 2020_05_20-AM-09_35_39
Last ObjectModification: 2020_01_08-PM-06_00_16

Theory : mset


Home Index