Nuprl Lemma : append_comm
∀T:Type. ∀as,bs:T List.  ((as @ bs) ≡(T) (bs @ as))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
append: as @ bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_wf, 
list_induction, 
all_wf, 
permr_wf, 
append_wf, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
istype-universe, 
append_back_nil, 
permr_reflex, 
cons_wf, 
permr_functionality_wrt_permr, 
cons_functionality_wrt_permr, 
permr_weakening, 
append_assoc, 
nil_wf, 
append_functionality_wrt_permr, 
append_comm_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
rename, 
functionIsType, 
productElimination
Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    ((as  @  bs)  \mequiv{}(T)  (bs  @  as))
Date html generated:
2019_10_16-PM-01_01_06
Last ObjectModification:
2018_10_08-AM-09_56_51
Theory : perms_2
Home
Index