Nuprl Lemma : append_comm

T:Type. ∀as,bs:T List.  ((as bs) ≡(T) (bs as))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs append: as bs list: List all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_wf list_induction all_wf permr_wf append_wf list_ind_nil_lemma istype-void list_ind_cons_lemma istype-universe append_back_nil permr_reflex cons_wf permr_functionality_wrt_permr cons_functionality_wrt_permr permr_weakening append_assoc nil_wf append_functionality_wrt_permr append_comm_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality sqequalRule lambdaEquality_alt dependent_functionElimination because_Cache inhabitedIsType independent_functionElimination isect_memberEquality_alt voidElimination rename functionIsType productElimination

Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    ((as  @  bs)  \mequiv{}(T)  (bs  @  as))



Date html generated: 2019_10_16-PM-01_01_06
Last ObjectModification: 2018_10_08-AM-09_56_51

Theory : perms_2


Home Index