Nuprl Lemma : append_comm_1

T:Type. ∀a:T. ∀as:T List.  ((as [a]) ≡(T) ([a] as))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs append: as bs cons: [a b] nil: [] list: List all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction permr_wf append_wf cons_wf nil_wf list_ind_nil_lemma istype-void list_ind_cons_lemma list_wf istype-universe permr_weakening permr_functionality_wrt_permr cons_functionality_wrt_permr hd_two_swap_permr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt dependent_functionElimination because_Cache hypothesis universeIsType independent_functionElimination isect_memberEquality_alt voidElimination rename inhabitedIsType universeEquality productElimination

Latex:
\mforall{}T:Type.  \mforall{}a:T.  \mforall{}as:T  List.    ((as  @  [a])  \mequiv{}(T)  ([a]  @  as))



Date html generated: 2019_10_16-PM-01_01_04
Last ObjectModification: 2018_10_08-AM-10_16_22

Theory : perms_2


Home Index