Nuprl Lemma : lookup_omral_scale_d

g:OCMon. ∀r:CDRng. ∀z,k:|g|. ∀v:|r|. ∀ps:|omral(g;r)|.
  (((<k,v>ps)[z]) y ∈ dom(ps). (when (k y) =b z. (v (ps[y])))) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omral_dom: dom(ps) omralist: omral(g;r) lookup: as[k] rng_mssum: rng_mssum infix_ap: y all: x:A. B[x] equal: t ∈ T rng_when: rng_when cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon dset_of_mon: g↓set grp_op: * grp_eq: =b grp_car: |g| set_car: |p|
Definitions unfolded in proof :  rng_mssum: rng_mssum oset_of_ocmon: g↓oset infix_ap: y rng_when: rng_when all: x:A. B[x]
Lemmas referenced :  lookup_omral_scale_c
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution hypothesis

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}z,k:|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.
    (((<k,v>*  ps)[z])  =  (\mSigma{}y  \mmember{}  dom(ps).  (when  (k  *  y)  =\msubb{}  z.  (v  *  (ps[y])))))



Date html generated: 2016_05_16-AM-08_25_21
Last ObjectModification: 2015_12_28-PM-06_38_40

Theory : polynom_3


Home Index