Nuprl Lemma : lookup_omral_scale_c

g:OCMon. ∀r:CDRng. ∀z,k:|g|. ∀v:|r|. ∀ps:|omral(g;r)|.
  (((<k,v>ps)[z]) (msFor{r↓+gp} y ∈ dom(ps). when (k y) =b z. (v (ps[y]))) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omral_dom: dom(ps) omralist: omral(g;r) lookup: as[k] mset_for: mset_for infix_ap: y all: x:A. B[x] equal: t ∈ T rng_when: rng_when add_grp_of_rng: r↓+gp cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_eq: =b grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng ocmon: OCMon abmonoid: AbMon mon: Mon decidable: Dec(P) or: P ∨ Q omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_car: |g| so_lambda: λ2x.t[x] prop: and: P ∧ Q omon: OMon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B omral_dom: dom(ps) null_mset: 0{s} oal_dom: dom(ps) mk_mset: mk_mset(as) top: Top assert: b not: ¬A exists: x:A. B[x] false: False mset_mem: mset_mem mem: a ∈b as set_eq: =b pi2: snd(t) mon_for: For{g} x ∈ as. f[x] bor_mon: <𝔹,∨b> grp_op: * grp_id: e for: For{T,op,id} x ∈ as. f[x] tlambda: λx:T. b[x] guard: {T} iff: ⇐⇒ Q rev_implies:  Q rng_when: rng_when squash: T true: True abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  set_car_wf omralist_wf dset_wf rng_car_wf grp_car_wf cdrng_wf ocmon_wf list_induction decidable_wf exists_wf assert_wf mset_mem_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf omral_dom_wf list_wf map_nil_lemma mset_mem_null_lemma false_wf map_cons_lemma for_cons_lemma reduce_wf bor_wf bfalse_wf map_wf pi1_wf assert_of_bor or_wf cons_wf not_wf decidable__mon_eq abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf dmon_wf iff_transitivity iff_weakening_uiff assert_of_mon_eq and_wf squash_wf true_wf lookup_wf poset_sig_wf oset_of_ocmon_wf0 rng_zero_wf omral_scale_wf lookup_omral_scale_a mset_for_functionality add_grp_of_rng_wf_b grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf mon_when_wf add_grp_of_rng_wf_a dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf imon_wf fset_for_when_unique omral_dom_wf2 iff_weakening_equal ocmon_cancel lookup_omral_scale_b mset_for_when_none
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule unionElimination productEquality because_Cache instantiate cumulativity universeEquality functionEquality equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation isect_memberEquality voidElimination voidEquality inrFormation functionExtensionality inlFormation dependent_pairFormation independent_pairEquality addLevel impliesFunctionality orFunctionality dependent_set_memberEquality applyLambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}z,k:|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.
    (((<k,v>*  ps)[z])  =  (msFor\{r\mdownarrow{}+gp\}  y  \mmember{}  dom(ps).  when  (k  *  y)  =\msubb{}  z.  (v  *  (ps[y]))))



Date html generated: 2017_10_01-AM-10_06_02
Last ObjectModification: 2017_03_03-PM-01_13_27

Theory : polynom_3


Home Index