Nuprl Lemma : omral_scale_wf

g:GrpSig. ∀r:RngSig. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.  (<k,v>ps ∈ (|g| × |r|) List)


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] rng_car: |r| rng_sig: RngSig grp_car: |g| grp_sig: GrpSig
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) pi2: snd(t) pi1: fst(t) infix_ap: y
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list grp_car_wf rng_car_wf less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_wf rng_sig_wf grp_sig_wf list_ind_cons_lemma ifthenelse_wf rng_eq_wf rng_times_wf rng_zero_wf cons_wf grp_op_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination independent_pairEquality

Latex:
\mforall{}g:GrpSig.  \mforall{}r:RngSig.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.    (<k,v>*  ps  \mmember{}  (|g|  \mtimes{}  |r|)  List)



Date html generated: 2017_10_01-AM-10_05_28
Last ObjectModification: 2017_03_03-PM-01_11_15

Theory : polynom_3


Home Index