Nuprl Lemma : omralist_wf

g:OCMon. ∀r:CDRng.  (omral(g;r) ∈ DSet)


Proof




Definitions occuring in Statement :  omralist: omral(g;r) all: x:A. B[x] member: t ∈ T cdrng: CDRng ocmon: OCMon dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q omralist: omral(g;r) ocmon: OCMon omon: OMon abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop:
Lemmas referenced :  cdrng_is_abdmonoid oalist_wf oset_of_ocmon_wf ulinorder_wf grp_car_wf assert_wf grp_le_wf equal_wf bool_wf grp_eq_wf band_wf cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis sqequalRule dependent_functionElimination setElimination rename dependent_set_memberEquality productEquality lambdaEquality applyEquality because_Cache functionEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    (omral(g;r)  \mmember{}  DSet)



Date html generated: 2018_05_22-AM-07_46_34
Last ObjectModification: 2018_05_19-AM-08_26_36

Theory : polynom_3


Home Index