Nuprl Lemma : ocmon_cancel

[g:OCMon]. ∀[u,v,w:|g|].  v ∈ |g| supposing (w u) (w v) ∈ |g|


Proof




Definitions occuring in Statement :  ocmon: OCMon grp_op: * grp_car: |g| uimplies: supposing a uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) uimplies: supposing a prop: ocmon: OCMon abmonoid: AbMon mon: Mon infix_ap: y
Lemmas referenced :  ocmon_properties equal_wf grp_car_wf grp_op_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality isectElimination axiomEquality setElimination rename applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OCMon].  \mforall{}[u,v,w:|g|].    u  =  v  supposing  (w  *  u)  =  (w  *  v)



Date html generated: 2016_05_15-PM-00_11_23
Last ObjectModification: 2015_12_26-PM-11_43_23

Theory : groups_1


Home Index