Nuprl Lemma : omral_dom_wf

g:OCMon. ∀r:CRng. ∀ps:(|g| × |r|) List.  (dom(ps) ∈ MSet{g↓oset})


Proof




Definitions occuring in Statement :  omral_dom: dom(ps) mset: MSet{s} list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] crng: CRng rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_car: |g|
Definitions unfolded in proof :  omral_dom: dom(ps) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B crng: CRng abgrp: AbGrp grp: Group{i} oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| rng: Rng
Lemmas referenced :  oal_dom_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf add_grp_of_rng_wf_b mon_wf inverse_wf grp_id_wf grp_inv_wf comm_wf set_wf list_wf rng_car_wf crng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CRng.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.    (dom(ps)  \mmember{}  MSet\{g\mdownarrow{}oset\})



Date html generated: 2017_10_01-AM-10_04_53
Last ObjectModification: 2017_03_03-PM-01_08_09

Theory : polynom_3


Home Index