Nuprl Lemma : lookup_omral_scale_a

g:OCMon. ∀r:CDRng. ∀k,k':|g|. ∀v:|r|. ∀ps:|omral(g;r)|.  (((<k,v>ps)[k k']) (v (ps[k'])) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omralist: omral(g;r) lookup: as[k] infix_ap: y all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] cdrng: CDRng crng: CRng rng: Rng ocmon: OCMon abmonoid: AbMon mon: Mon and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B guard: {T} uimplies: supposing a omon: OMon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| dset: DSet omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] set_eq: =b bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False squash: T true: True rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rng_car_wf grp_car_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf dmon_wf oalist_ind oset_of_ocmon_wf ulinorder_wf assert_wf grp_le_wf equal_wf bool_wf grp_eq_wf band_wf set_car_wf omralist_wf dset_wf lookup_wf oset_of_ocmon_wf0 mon_subtype_grp_sig dmon_subtype_mon mon_wf grp_sig_wf rng_zero_wf infix_ap_wf grp_op_wf subtype_rel_self omral_scale_wf rng_times_wf list_wf list_ind_nil_lemma lookup_nil_lemma rng_times_zero list_ind_cons_lemma lookup_cons_pr_lemma not_wf before_wf ocmon_subtype_omon map_wf set_prod_wf dset_of_mon_wf rng_eq_wf uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_rng_eq cdrng_subtype_drng assert_of_mon_eq iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot squash_wf true_wf rng_lookup_before_start omral_scale_wf2 iff_weakening_equal rng_before_all_imp_before omral_scale_dom_bound rng_before_imp_before_all assert_functionality_wrt_uiff ocmon_cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination equalityTransitivity equalitySymmetry independent_pairFormation applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination dependent_set_memberEquality productEquality lambdaEquality because_Cache functionEquality independent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination baseClosed impliesFunctionality imageElimination universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (((<k,v>*  ps)[k  *  k'])  =  (v  *  (ps[k'])))



Date html generated: 2018_05_22-AM-07_46_44
Last ObjectModification: 2018_05_19-AM-08_27_25

Theory : polynom_3


Home Index