Nuprl Lemma : lookup_omral_scale_a
∀g:OCMon. ∀r:CDRng. ∀k,k':|g|. ∀v:|r|. ∀ps:|omral(g;r)|.  (((<k,v>* ps)[k * k']) = (v * (ps[k'])) ∈ |r|)
Proof
Definitions occuring in Statement : 
omral_scale: <k,v>* ps, 
omralist: omral(g;r), 
lookup: as[k], 
infix_ap: x f y, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_times: *, 
rng_zero: 0, 
rng_car: |r|, 
oset_of_ocmon: g↓oset, 
ocmon: OCMon, 
grp_op: *, 
grp_car: |g|, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
omon: OMon, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
grp_car: |g|, 
dset: DSet, 
omral_scale: <k,v>* ps, 
ycomb: Y, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
set_eq: =b, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
squash: ↓T, 
true: True, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rng_car_wf, 
grp_car_wf, 
cdrng_wf, 
ocmon_wf, 
cdrng_is_abdmonoid, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
abdmonoid_wf, 
dmon_wf, 
oalist_ind, 
oset_of_ocmon_wf, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
band_wf, 
set_car_wf, 
omralist_wf, 
dset_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
mon_wf, 
grp_sig_wf, 
rng_zero_wf, 
infix_ap_wf, 
grp_op_wf, 
subtype_rel_self, 
omral_scale_wf, 
rng_times_wf, 
list_wf, 
list_ind_nil_lemma, 
lookup_nil_lemma, 
rng_times_zero, 
list_ind_cons_lemma, 
lookup_cons_pr_lemma, 
not_wf, 
before_wf, 
ocmon_subtype_omon, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
rng_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
assert_of_mon_eq, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
rng_lookup_before_start, 
omral_scale_wf2, 
iff_weakening_equal, 
rng_before_all_imp_before, 
omral_scale_dom_bound, 
rng_before_imp_before_all, 
assert_functionality_wrt_uiff, 
ocmon_cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
dependent_set_memberEquality, 
productEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (((<k,v>*  ps)[k  *  k'])  =  (v  *  (ps[k'])))
Date html generated:
2018_05_22-AM-07_46_44
Last ObjectModification:
2018_05_19-AM-08_27_25
Theory : polynom_3
Home
Index