Nuprl Lemma : omral_scale_dom_bound

g:OCMon. ∀r:CDRng. ∀bound,k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((↑(∀bx(:|g|) ∈ map(λz.(fst(z));ps)
         (x <b bound)))
   (↑(∀bx(:|g|) ∈ map(λz.(fst(z));<k,v>ps)
           (x <b (k bound)))))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps ball: ball map: map(f;as) list: List assert: b infix_ap: y pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] cdrng: CDRng rng_car: |r| grp_blt: a <b b ocmon: OCMon grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon infix_ap: y so_apply: x[s] prop: cdrng: CDRng crng: CRng rng: Rng pi1: fst(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| subtype_rel: A ⊆B omon: OMon and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff cand: c∧ B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  omral_scale_dom_pred grp_blt_wf grp_op_wf grp_car_wf assert_wf ball_wf map_wf rng_car_wf list_wf cdrng_wf ocmon_wf iff_transitivity infix_ap_wf all_wf mem_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf uall_wf monot_wf iff_weakening_uiff assert_functionality_wrt_uiff squash_wf true_wf ball_char set_car_wf oset_of_ocmon_wf0 pi1_wf assert_of_grp_blt grp_op_preserves_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality isectElimination setElimination rename hypothesis applyEquality because_Cache independent_functionElimination productEquality productElimination equalityTransitivity equalitySymmetry functionEquality instantiate cumulativity universeEquality unionElimination equalityElimination independent_isectElimination setEquality independent_pairFormation imageElimination natural_numberEquality imageMemberEquality baseClosed independent_pairEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}bound,k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));ps)
                  (x  <\msubb{}  bound)))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));<k,v>*  ps)
                      (x  <\msubb{}  (k  *  bound)))))



Date html generated: 2017_10_01-AM-10_05_32
Last ObjectModification: 2017_03_03-PM-01_11_56

Theory : polynom_3


Home Index