Nuprl Lemma : omral_scale_dom_bound
∀g:OCMon. ∀r:CDRng. ∀bound,k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((↑(∀bx(:|g|) ∈ map(λz.(fst(z));ps)
         (x <b bound)))
  ⇒ (↑(∀bx(:|g|) ∈ map(λz.(fst(z));<k,v>* ps)
           (x <b (k * bound)))))
Proof
Definitions occuring in Statement : 
omral_scale: <k,v>* ps, 
ball: ball, 
map: map(f;as), 
list: T List, 
assert: ↑b, 
infix_ap: x f y, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
cdrng: CDRng, 
rng_car: |r|, 
grp_blt: a <b b, 
ocmon: OCMon, 
grp_op: *, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
infix_ap: x f y, 
so_apply: x[s], 
prop: ℙ, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
pi1: fst(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
subtype_rel: A ⊆r B, 
omon: OMon, 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
omral_scale_dom_pred, 
grp_blt_wf, 
grp_op_wf, 
grp_car_wf, 
assert_wf, 
ball_wf, 
map_wf, 
rng_car_wf, 
list_wf, 
cdrng_wf, 
ocmon_wf, 
iff_transitivity, 
infix_ap_wf, 
all_wf, 
mem_wf, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
uall_wf, 
monot_wf, 
iff_weakening_uiff, 
assert_functionality_wrt_uiff, 
squash_wf, 
true_wf, 
ball_char, 
set_car_wf, 
oset_of_ocmon_wf0, 
pi1_wf, 
assert_of_grp_blt, 
grp_op_preserves_lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
productEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
instantiate, 
cumulativity, 
universeEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
setEquality, 
independent_pairFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}bound,k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));ps)
                  (x  <\msubb{}  bound)))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));<k,v>*  ps)
                      (x  <\msubb{}  (k  *  bound)))))
Date html generated:
2017_10_01-AM-10_05_32
Last ObjectModification:
2017_03_03-PM-01_11_56
Theory : polynom_3
Home
Index