Nuprl Lemma : grp_blt_wf
ā[g:GrpSig]. ā[a,b:|g|]. (a <b b ā š¹)
Proof
Definitions occuring in Statement :
grp_blt: a <b b
,
grp_car: |g|
,
grp_sig: GrpSig
,
bool: š¹
,
uall: ā[x:A]. B[x]
,
member: t ā T
Definitions unfolded in proof :
grp_blt: a <b b
,
uall: ā[x:A]. B[x]
,
member: t ā T
,
oset_of_ocmon: gāoset
,
dset_of_mon: gāset
,
set_car: |p|
,
pi1: fst(t)
Lemmas referenced :
set_blt_wf,
oset_of_ocmon_wf0,
grp_car_wf,
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[g:GrpSig]. \mforall{}[a,b:|g|]. (a <\msubb{} b \mmember{} \mBbbB{})
Date html generated:
2016_05_15-PM-00_13_31
Last ObjectModification:
2015_12_26-PM-11_41_34
Theory : groups_1
Home
Index