Nuprl Lemma : grp_blt_wf
∀[g:GrpSig]. ∀[a,b:|g|].  (a <b b ∈ 𝔹)
Proof
Definitions occuring in Statement : 
grp_blt: a <b b
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
grp_blt: a <b b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
Lemmas referenced : 
set_blt_wf, 
oset_of_ocmon_wf0, 
grp_car_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[g:GrpSig].  \mforall{}[a,b:|g|].    (a  <\msubb{}  b  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-00_13_31
Last ObjectModification:
2015_12_26-PM-11_41_34
Theory : groups_1
Home
Index