Nuprl Lemma : omral_scale_dom_pred

g:OCMon. ∀r:CDRng. ∀Q:|g| ⟶ 𝔹. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((↑(∀bx(:|g|) ∈ map(λz.(fst(z));ps). Q[k x]))  (↑(∀bx(:|g|) ∈ map(λz.(fst(z));<k,v>ps). Q[x])))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps ball: ball map: map(f;as) list: List assert: b bool: 𝔹 infix_ap: y so_apply: x[s] pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] cdrng: CDRng rng_car: |r| ocmon: OCMon grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng so_lambda: λ2x.t[x] implies:  Q prop: pi1: fst(t) so_apply: x[s] infix_ap: y ball: ball top: Top omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt true: True or: P ∨ Q band: p ∧b q bfalse: ff false: False bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a pi2: snd(t) subtype_rel: A ⊆B iff: ⇐⇒ Q not: ¬A rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) cand: c∧ B sq_type: SQType(T) guard: {T}
Lemmas referenced :  list_induction grp_car_wf rng_car_wf assert_wf ball_wf map_wf infix_ap_wf grp_op_wf omral_scale_wf list_wf map_nil_lemma list_ind_nil_lemma ball_nil_lemma true_wf map_cons_lemma ball_cons_lemma bool_cases_sqequal pi1_wf bool_wf eqtt_to_assert equal_wf cdrng_wf ocmon_wf list_ind_cons_lemma rng_eq_wf rng_times_wf rng_zero_wf uiff_transitivity equal-wf-T-base assert_of_rng_eq cdrng_subtype_drng iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot assert_of_band and_wf assert_elim subtype_base_sq bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality functionEquality dependent_functionElimination productElimination hypothesisEquality applyEquality functionExtensionality independent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_pairEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry baseClosed independent_pairFormation impliesFunctionality dependent_set_memberEquality applyLambdaEquality instantiate cumulativity

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}Q:|g|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));ps)
                  Q[k  *  x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));<k,v>*  ps)
                      Q[x])))



Date html generated: 2017_10_01-AM-10_05_29
Last ObjectModification: 2017_03_03-PM-01_11_24

Theory : polynom_3


Home Index