Nuprl Lemma : omral_scale_dom_pred
∀g:OCMon. ∀r:CDRng. ∀Q:|g| ⟶ 𝔹. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((↑(∀bx(:|g|) ∈ map(λz.(fst(z));ps). Q[k * x])) 
⇒ (↑(∀bx(:|g|) ∈ map(λz.(fst(z));<k,v>* ps). Q[x])))
Proof
Definitions occuring in Statement : 
omral_scale: <k,v>* ps
, 
ball: ball, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
cdrng: CDRng
, 
rng_car: |r|
, 
ocmon: OCMon
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
ball: ball, 
top: Top
, 
omral_scale: <k,v>* ps
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
or: P ∨ Q
, 
band: p ∧b q
, 
bfalse: ff
, 
false: False
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
list_induction, 
grp_car_wf, 
rng_car_wf, 
assert_wf, 
ball_wf, 
map_wf, 
infix_ap_wf, 
grp_op_wf, 
omral_scale_wf, 
list_wf, 
map_nil_lemma, 
list_ind_nil_lemma, 
ball_nil_lemma, 
true_wf, 
map_cons_lemma, 
ball_cons_lemma, 
bool_cases_sqequal, 
pi1_wf, 
bool_wf, 
eqtt_to_assert, 
equal_wf, 
cdrng_wf, 
ocmon_wf, 
list_ind_cons_lemma, 
rng_eq_wf, 
rng_times_wf, 
rng_zero_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
assert_of_band, 
and_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
productElimination, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
independent_pairEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}Q:|g|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));ps)
                  Q[k  *  x]))
    {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|g|)  \mmember{}  map(\mlambda{}z.(fst(z));<k,v>*  ps)
                      Q[x])))
Date html generated:
2017_10_01-AM-10_05_29
Last ObjectModification:
2017_03_03-PM-01_11_24
Theory : polynom_3
Home
Index