Nuprl Lemma : assert_of_grp_blt

[g:OCMon]. ∀[a,b:|g|].  uiff(↑(a <b b);a < b)


Proof




Definitions occuring in Statement :  grp_blt: a <b b grp_lt: a < b ocmon: OCMon grp_car: |g| assert: b uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ocmon: OCMon abmonoid: AbMon mon: Mon oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) grp_blt: a <b b grp_lt: a < b uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a set_lt: a <b implies:  Q prop:
Lemmas referenced :  assert_of_set_lt oset_of_ocmon_wf0 assert_witness set_blt_wf assert_wf grp_blt_wf grp_lt_wf grp_car_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule isect_memberEquality productElimination independent_pairEquality independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OCMon].  \mforall{}[a,b:|g|].    uiff(\muparrow{}(a  <\msubb{}  b);a  <  b)



Date html generated: 2016_05_15-PM-00_13_34
Last ObjectModification: 2015_12_26-PM-11_41_30

Theory : groups_1


Home Index