Nuprl Lemma : grp_op_preserves_lt

[g:OCMon]. ∀[u,v,w:|g|].  (u v) < (u w) supposing v < w


Proof




Definitions occuring in Statement :  grp_lt: a < b ocmon: OCMon grp_op: * grp_car: |g| uimplies: supposing a uall: [x:A]. B[x] infix_ap: y
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a grp_lt: a < b set_lt: a <b ocmon: OCMon abmonoid: AbMon mon: Mon infix_ap: y subtype_rel: A ⊆B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) implies:  Q prop: omon: OMon so_lambda: λ2x.t[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff so_apply: x[s] cand: c∧ B rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False
Lemmas referenced :  assert_witness set_blt_wf oset_of_ocmon_wf0 grp_op_wf grp_car_wf grp_lt_wf ocmon_wf grp_lt_is_sp_of_leq_a subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf uall_wf monot_wf grp_op_preserves_le grp_leq_wf grp_leq_weakening_eq ocmon_cancel grp_leq_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality because_Cache lambdaEquality independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry instantiate productEquality cumulativity universeEquality functionEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_functionElimination setEquality independent_pairFormation voidElimination

Latex:
\mforall{}[g:OCMon].  \mforall{}[u,v,w:|g|].    (u  *  v)  <  (u  *  w)  supposing  v  <  w



Date html generated: 2017_10_01-AM-08_15_08
Last ObjectModification: 2017_02_28-PM-02_00_24

Theory : groups_1


Home Index