Nuprl Lemma : grp_leq_weakening_eq

[g:OMon]. ∀[a,b:|g|].  a ≤ supposing b ∈ |g|


Proof




Definitions occuring in Statement :  grp_leq: a ≤ b omon: OMon grp_car: |g| uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B loset: LOSet poset: POSet{i} oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) set_leq: a ≤ b set_le: b pi2: snd(t) grp_leq: a ≤ b uimplies: supposing a infix_ap: y omon: OMon abmonoid: AbMon mon: Mon implies:  Q prop:
Lemmas referenced :  set_leq_weakening_eq oset_of_ocmon_wf loset_wf assert_witness grp_le_wf equal_wf grp_car_wf omon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule isect_memberEquality independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OMon].  \mforall{}[a,b:|g|].    a  \mleq{}  b  supposing  a  =  b



Date html generated: 2016_05_15-PM-00_12_17
Last ObjectModification: 2015_12_26-PM-11_42_48

Theory : groups_1


Home Index