Nuprl Lemma : grp_leq_weakening_eq
∀[g:OMon]. ∀[a,b:|g|].  a ≤ b supposing a = b ∈ |g|
Proof
Definitions occuring in Statement : 
grp_leq: a ≤ b
, 
omon: OMon
, 
grp_car: |g|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
loset: LOSet
, 
poset: POSet{i}
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
set_leq: a ≤ b
, 
set_le: ≤b
, 
pi2: snd(t)
, 
grp_leq: a ≤ b
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
omon: OMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
set_leq_weakening_eq, 
oset_of_ocmon_wf, 
loset_wf, 
assert_witness, 
grp_le_wf, 
equal_wf, 
grp_car_wf, 
omon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OMon].  \mforall{}[a,b:|g|].    a  \mleq{}  b  supposing  a  =  b
Date html generated:
2016_05_15-PM-00_12_17
Last ObjectModification:
2015_12_26-PM-11_42_48
Theory : groups_1
Home
Index