Nuprl Lemma : grp_lt_is_sp_of_leq_a

[g:OMon]. ∀[a,b:|g|].  uiff(a < b;(a ≤ b) ∧ (b ≤ a)))


Proof




Definitions occuring in Statement :  grp_lt: a < b grp_leq: a ≤ b omon: OMon grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T omon: OMon abmonoid: AbMon mon: Mon oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) set_leq: a ≤ b set_le: b pi2: snd(t) grp_lt: a < b grp_leq: a ≤ b uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a infix_ap: y implies:  Q not: ¬A false: False prop: set_lt: a <b
Lemmas referenced :  set_lt_is_sp_of_leq_a oset_of_ocmon_wf0 assert_witness grp_le_wf grp_leq_wf grp_lt_wf set_blt_wf and_wf not_wf grp_car_wf omon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule isect_memberEquality productElimination independent_pairEquality applyEquality independent_functionElimination lambdaEquality dependent_functionElimination voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:OMon].  \mforall{}[a,b:|g|].    uiff(a  <  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))



Date html generated: 2016_05_15-PM-00_12_02
Last ObjectModification: 2015_12_26-PM-11_43_03

Theory : groups_1


Home Index