Nuprl Lemma : grp_lt_is_sp_of_leq_a
∀[g:OMon]. ∀[a,b:|g|].  uiff(a < b;(a ≤ b) ∧ (¬(b ≤ a)))
Proof
Definitions occuring in Statement : 
grp_lt: a < b
, 
grp_leq: a ≤ b
, 
omon: OMon
, 
grp_car: |g|
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
omon: OMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
set_leq: a ≤ b
, 
set_le: ≤b
, 
pi2: snd(t)
, 
grp_lt: a < b
, 
grp_leq: a ≤ b
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
set_lt: a <p b
Lemmas referenced : 
set_lt_is_sp_of_leq_a, 
oset_of_ocmon_wf0, 
assert_witness, 
grp_le_wf, 
grp_leq_wf, 
grp_lt_wf, 
set_blt_wf, 
and_wf, 
not_wf, 
grp_car_wf, 
omon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
applyEquality, 
independent_functionElimination, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OMon].  \mforall{}[a,b:|g|].    uiff(a  <  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))
Date html generated:
2016_05_15-PM-00_12_02
Last ObjectModification:
2015_12_26-PM-11_43_03
Theory : groups_1
Home
Index