Nuprl Lemma : omral_scale_wf2

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:|omral(g;r)|.  (<k,v>ps ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omralist: omral(g;r) all: x:A. B[x] member: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng ocmon: OCMon abmonoid: AbMon mon: Mon dmon: DMon grp: Group{i} grp_car: |g| pi1: fst(t) add_grp_of_rng: r↓+gp rng_car: |r| grp_eq: =b pi2: snd(t) rng_eq: =b prop: omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_id: e and: P ∧ Q cand: c∧ B omon: OMon so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] guard: {T}
Lemmas referenced :  set_car_wf omralist_wf dset_wf rng_car_wf grp_car_wf cdrng_wf ocmon_wf cdrng_properties add_grp_of_rng_wf_a grp_wf eqfun_p_wf grp_eq_wf assert_wf sd_ordered_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf infix_ap_wf bool_wf grp_le_wf equal_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf map_wf oset_of_ocmon_wf0 not_wf mem_wf dset_of_mon_wf rng_zero_wf dset_of_mon_wf0 dmon_wf omral_scale_wf omral_scale_sd_ordered omral_scale_non_zero_vals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule dependent_set_memberEquality because_Cache productElimination independent_pairFormation productEquality instantiate cumulativity universeEquality functionEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (<k,v>*  ps  \mmember{}  |omral(g;r)|)



Date html generated: 2017_10_01-AM-10_05_43
Last ObjectModification: 2017_03_03-PM-01_15_53

Theory : polynom_3


Home Index