Nuprl Lemma : omral_scale_non_zero_vals
∀g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((¬↑(0 ∈b map(λx.(snd(x));ps))) 
⇒ (¬↑(0 ∈b map(λx.(snd(x));<k,v>* ps))))
Proof
Definitions occuring in Statement : 
omral_scale: <k,v>* ps
, 
mem: a ∈b as
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
add_grp_of_rng: r↓+gp
, 
cdrng: CDRng
, 
rng_zero: 0
, 
rng_car: |r|
, 
ocmon: OCMon
, 
dset_of_mon: g↓set
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
abdmonoid: AbDMon
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
dmon: DMon
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
top: Top
, 
omral_scale: <k,v>* ps
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
set_eq: =b
, 
grp_eq: =b
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
cdrng_is_abdmonoid, 
list_induction, 
grp_car_wf, 
rng_car_wf, 
not_wf, 
assert_wf, 
mem_wf, 
dset_of_mon_wf, 
abdmonoid_wf, 
rng_zero_wf, 
map_wf, 
set_car_wf, 
dset_of_mon_wf0, 
omral_scale_wf, 
list_wf, 
map_nil_lemma, 
list_ind_nil_lemma, 
mem_nil_lemma, 
map_cons_lemma, 
mem_cons_lemma, 
cdrng_wf, 
ocmon_wf, 
false_wf, 
list_ind_cons_lemma, 
not_over_or, 
equal_wf, 
or_wf, 
iff_transitivity, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
rng_eq_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
rng_times_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
grp_op_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bnot_wf, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
productElimination, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
independent_pairFormation, 
orFunctionality, 
impliesLevelFunctionality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_pairEquality, 
baseClosed
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));<k,v>*  ps))))
Date html generated:
2017_10_01-AM-10_05_41
Last ObjectModification:
2017_03_03-PM-01_12_02
Theory : polynom_3
Home
Index