Nuprl Lemma : omral_scale_non_zero_vals

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((¬↑(0 ∈b map(λx.(snd(x));ps)))  (¬↑(0 ∈b map(λx.(snd(x));<k,v>ps))))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps mem: a ∈b as map: map(f;as) list: List assert: b pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 rng_car: |r| ocmon: OCMon dset_of_mon: g↓set grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng so_lambda: λ2x.t[x] and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B guard: {T} abdmonoid: AbDMon dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| dmon: DMon pi2: snd(t) so_apply: x[s] top: Top omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  bfalse: ff set_eq: =b grp_eq: =b not: ¬A false: False uiff: uiff(P;Q) uimplies: supposing a infix_ap: y iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  cdrng_is_abdmonoid list_induction grp_car_wf rng_car_wf not_wf assert_wf mem_wf dset_of_mon_wf abdmonoid_wf rng_zero_wf map_wf set_car_wf dset_of_mon_wf0 omral_scale_wf list_wf map_nil_lemma list_ind_nil_lemma mem_nil_lemma map_cons_lemma mem_cons_lemma cdrng_wf ocmon_wf false_wf list_ind_cons_lemma not_over_or equal_wf or_wf iff_transitivity bor_wf infix_ap_wf bool_wf rng_eq_wf iff_weakening_uiff assert_of_bor assert_of_rng_eq cdrng_subtype_drng rng_times_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf grp_op_wf uiff_transitivity equal-wf-T-base bnot_wf assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality setElimination rename because_Cache hypothesis sqequalRule productElimination lambdaEquality functionEquality dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality independent_functionElimination isect_memberEquality voidElimination voidEquality independent_isectElimination addLevel impliesFunctionality independent_pairFormation orFunctionality impliesLevelFunctionality unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_pairEquality baseClosed

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));<k,v>*  ps))))



Date html generated: 2017_10_01-AM-10_05_41
Last ObjectModification: 2017_03_03-PM-01_12_02

Theory : polynom_3


Home Index