Nuprl Lemma : omral_scale_sd_ordered

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((↑sd_ordered(map(λz.(fst(z));ps)))  (↑sd_ordered(map(λz.(fst(z));<k,v>ps))))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps sd_ordered: sd_ordered(as) map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] cdrng: CDRng rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng so_lambda: λ2x.t[x] and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B omon: OMon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B pi1: fst(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| top: Top omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b true: True pi2: snd(t) iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False band_mon: <𝔹,∧b> grp_car: |g| guard: {T} rev_uimplies: rev_uimplies(P;Q) grp_op: * ball: ball mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) nil: [] grp_id: e grp_lt: a < b
Lemmas referenced :  cdrng_is_abdmonoid list_induction grp_car_wf rng_car_wf assert_wf sd_ordered_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf map_wf set_car_wf oset_of_ocmon_wf0 omral_scale_wf list_wf map_nil_lemma list_ind_nil_lemma sd_ordered_nil_lemma map_cons_lemma sd_ordered_cons_lemma cdrng_wf ocmon_wf true_wf list_ind_cons_lemma assert_of_band before_wf rng_eq_wf rng_times_wf rng_zero_wf uiff_transitivity equal-wf-T-base assert_of_rng_eq cdrng_subtype_drng iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot cons_wf mon_htfor_wf band_mon_wf ball_wf set_blt_wf pi1_wf assert_functionality_wrt_uiff sd_ordered_char mon_htfor_cons_lemma nil_wf ball_cons_lemma assert_of_set_lt set_lt_wf grp_op_preserves_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality setElimination rename because_Cache hypothesis sqequalRule productElimination lambdaEquality functionEquality dependent_functionElimination applyEquality instantiate cumulativity universeEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation isect_memberEquality voidElimination voidEquality natural_numberEquality baseClosed impliesFunctionality independent_pairEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));<k,v>*  ps))))



Date html generated: 2017_10_01-AM-10_05_38
Last ObjectModification: 2017_03_03-PM-01_12_56

Theory : polynom_3


Home Index