Step
*
of Lemma
omral_scale_sd_ordered
∀g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
((↑sd_ordered(map(λz.(fst(z));ps)))
⇒ (↑sd_ordered(map(λz.(fst(z));<k,v>* ps))))
BY
{ (RepeatFor 2 ((D 0 THENA Auto))
THEN (InstLemma `cdrng_is_abdmonoid` [⌜r⌝]⋅ THENA Auto)
THEN InductionOnListA
THEN Reduce 0) }
1
1. g : OCMon
2. r : CDRng
3. (r↓+gp ∈ AbDMon) ∧ (r↓xmn ∈ AbDMon)
4. k : |g|
5. v : |r|
⊢ True
⇒ True
2
1. g : OCMon
2. r : CDRng
3. (r↓+gp ∈ AbDMon) ∧ (r↓xmn ∈ AbDMon)
4. k : |g|
5. v : |r|
6. p : |g| × |r|
7. ps : (|g| × |r|) List
8. (↑sd_ordered(map(λz.(fst(z));ps)))
⇒ (↑sd_ordered(map(λz.(fst(z));<k,v>* ps)))
⊢ (↑(before(fst(p);map(λz.(fst(z));ps)) ∧b sd_ordered(map(λz.(fst(z));ps))))
⇒ (↑sd_ordered(map(λz.(fst(z));<k,v>* [p / ps])))
Latex:
Latex:
\mforall{}g:OCMon. \mforall{}r:CDRng. \mforall{}k:|g|. \mforall{}v:|r|. \mforall{}ps:(|g| \mtimes{} |r|) List.
((\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));ps))) {}\mRightarrow{} (\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));<k,v>* ps))))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto))
THEN (InstLemma `cdrng\_is\_abdmonoid` [\mkleeneopen{}r\mkleeneclose{}]\mcdot{} THENA Auto)
THEN InductionOnListA
THEN Reduce 0)
Home
Index