Nuprl Lemma : mset_for_when_none

s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀b:|s| ⟶ 𝔹. ∀as:MSet{s}.
  ((∀x:|s|. ((↑(x ∈b as))  (¬↑b[x])))  ((msFor{g} x ∈ as. when b[x]. f[x]) e ∈ |g|))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem mset: MSet{s} assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] equal: t ∈ T mon_when: when b. p iabmonoid: IAbMonoid grp_id: e grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] iabmonoid: IAbMonoid imon: IMonoid sq_stable: SqStable(P) mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q squash: T mset_for: mset_for mset_mem: mset_mem
Lemmas referenced :  all_wf set_car_wf assert_wf mset_mem_wf not_wf mset_wf bool_wf grp_car_wf iabmonoid_wf dset_wf sq_stable__all equal_wf mset_for_wf mon_when_wf grp_id_wf sq_stable__equal squash_wf list_wf permr_wf equal-wf-base mem_wf mon_for_when_none
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality functionEquality dependent_functionElimination applyEquality functionExtensionality because_Cache independent_functionElimination pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}b:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:MSet\{s\}.
    ((\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\mneg{}\muparrow{}b[x])))  {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  as.  when  b[x].  f[x])  =  e))



Date html generated: 2017_10_01-AM-10_00_37
Last ObjectModification: 2017_03_03-PM-01_02_12

Theory : mset


Home Index