Nuprl Lemma : mon_for_when_none

s:DSet. ∀g:IMonoid. ∀f:|s| ⟶ |g|. ∀b:|s| ⟶ 𝔹. ∀as:|s| List.
  ((∀x:|s|. ((↑(x ∈b as))  (¬↑b[x])))  ((For{g} x ∈ as. (when b[x]. f[x])) e ∈ |g|))


Proof




Definitions occuring in Statement :  mem: a ∈b as mon_for: For{g} x ∈ as. f[x] list: List assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] equal: t ∈ T mon_when: when b. p imon: IMonoid grp_id: e grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: dset: DSet so_apply: x[s] imon: IMonoid top: Top assert: b ifthenelse: if then else fi  bfalse: ff false: False infix_ap: y mon_when: when b. p bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q not: ¬A squash: T exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb true: True subtype_rel: A ⊆B
Lemmas referenced :  list_induction all_wf set_car_wf assert_wf mem_wf not_wf equal_wf grp_car_wf mon_for_wf mon_when_wf grp_id_wf mem_nil_lemma istype-void mon_for_nil_lemma mem_cons_lemma mon_for_cons_lemma bor_wf set_eq_wf list_wf bool_wf imon_wf dset_wf equal-wf-T-base bnot_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot or_wf member_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_dset_eq squash_wf true_wf istype-universe mon_ident bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality_alt functionEquality setElimination rename hypothesis dependent_functionElimination hypothesisEquality applyEquality universeIsType independent_functionElimination isect_memberEquality_alt voidElimination functionIsType inhabitedIsType equalityIsType1 equalityTransitivity equalitySymmetry baseClosed unionElimination equalityElimination productElimination independent_isectElimination unionIsType independent_pairFormation inlFormation_alt inrFormation_alt imageElimination universeEquality dependent_pairFormation_alt promote_hyp instantiate cumulativity natural_numberEquality imageMemberEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:IMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}b:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:|s|  List.
    ((\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\mneg{}\muparrow{}b[x])))  {}\mRightarrow{}  ((For\{g\}  x  \mmember{}  as.  (when  b[x].  f[x]))  =  e))



Date html generated: 2019_10_16-PM-01_02_49
Last ObjectModification: 2018_10_08-PM-00_29_15

Theory : list_2


Home Index