Nuprl Lemma : mon_for_when_none
∀s:DSet. ∀g:IMonoid. ∀f:|s| ⟶ |g|. ∀b:|s| ⟶ 𝔹. ∀as:|s| List.
  ((∀x:|s|. ((↑(x ∈b as)) 
⇒ (¬↑b[x]))) 
⇒ ((For{g} x ∈ as. (when b[x]. f[x])) = e ∈ |g|))
Proof
Definitions occuring in Statement : 
mem: a ∈b as
, 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
mon_when: when b. p
, 
imon: IMonoid
, 
grp_id: e
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
dset: DSet
, 
so_apply: x[s]
, 
imon: IMonoid
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
infix_ap: x f y
, 
mon_when: when b. p
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
true: True
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list_induction, 
all_wf, 
set_car_wf, 
assert_wf, 
mem_wf, 
not_wf, 
equal_wf, 
grp_car_wf, 
mon_for_wf, 
mon_when_wf, 
grp_id_wf, 
mem_nil_lemma, 
istype-void, 
mon_for_nil_lemma, 
mem_cons_lemma, 
mon_for_cons_lemma, 
bor_wf, 
set_eq_wf, 
list_wf, 
bool_wf, 
imon_wf, 
dset_wf, 
equal-wf-T-base, 
bnot_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
or_wf, 
member_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
squash_wf, 
true_wf, 
istype-universe, 
mon_ident, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
inhabitedIsType, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
unionIsType, 
independent_pairFormation, 
inlFormation_alt, 
inrFormation_alt, 
imageElimination, 
universeEquality, 
dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}s:DSet.  \mforall{}g:IMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}b:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:|s|  List.
    ((\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\mneg{}\muparrow{}b[x])))  {}\mRightarrow{}  ((For\{g\}  x  \mmember{}  as.  (when  b[x].  f[x]))  =  e))
Date html generated:
2019_10_16-PM-01_02_49
Last ObjectModification:
2018_10_08-PM-00_29_15
Theory : list_2
Home
Index