Nuprl Lemma : lookup_omral_scale_b

g:OCMon. ∀r:CDRng. ∀k,k':|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((¬(∃d:|g|. ((↑(d ∈b dom(ps))) ∧ ((k d) k' ∈ |g|))))  (((<k,v>ps)[k']) 0 ∈ |r|))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omral_dom: dom(ps) lookup: as[k] mset_mem: mset_mem list: List assert: b infix_ap: y all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q product: x:A × B[x] equal: t ∈ T cdrng: CDRng rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q omon: OMon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] guard: {T} uimplies: supposing a oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) so_apply: x[s] grp_car: |g| omral_scale: <k,v>ps ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi2: snd(t) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A set_eq: =b cand: c∧ B omral_dom: dom(ps) mset_inj: mset_inj{s}(x) oal_dom: dom(ps) mset_sum: b mk_mset: mk_mset(as) append: as bs iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  omon_inc ocmon_subtype_omon abdmonoid_dmon list_induction grp_car_wf rng_car_wf not_wf exists_wf assert_wf mset_mem_wf oset_of_ocmon_wf ulinorder_wf grp_le_wf equal_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf dset_wf omral_dom_wf grp_op_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf omral_scale_wf subtype_rel_self list_wf set_car_wf nil_wf cons_wf cdrng_wf ocmon_wf list_ind_nil_lemma lookup_nil_lemma list_ind_cons_lemma rng_eq_wf rng_times_wf eqtt_to_assert assert_of_rng_eq cdrng_subtype_drng eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot lookup_cons_pr_lemma map_cons_lemma mset_mem_inj_sum_lemma iff_transitivity bor_wf or_wf iff_weakening_uiff assert_of_bor assert_of_mon_eq uiff_transitivity equal-wf-T-base bnot_wf assert_of_bnot member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule promote_hyp isectElimination productEquality setElimination rename lambdaEquality functionEquality dependent_set_memberEquality productElimination because_Cache instantiate independent_isectElimination independent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation cumulativity independent_pairFormation orFunctionality inrFormation independent_pairEquality baseClosed impliesFunctionality inlFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}(\mexists{}d:|g|.  ((\muparrow{}(d  \mmember{}\msubb{}  dom(ps)))  \mwedge{}  ((k  *  d)  =  k'))))  {}\mRightarrow{}  (((<k,v>*  ps)[k'])  =  0))



Date html generated: 2018_05_22-AM-07_46_50
Last ObjectModification: 2018_05_19-AM-08_27_40

Theory : polynom_3


Home Index