Nuprl Lemma : lookup_omral_scale_b
∀g:OCMon. ∀r:CDRng. ∀k,k':|g|. ∀v:|r|. ∀ps:(|g| × |r|) List.
  ((¬(∃d:|g|. ((↑(d ∈b dom(ps))) ∧ ((k * d) = k' ∈ |g|)))) 
⇒ (((<k,v>* ps)[k']) = 0 ∈ |r|))
Proof
Definitions occuring in Statement : 
omral_scale: <k,v>* ps
, 
omral_dom: dom(ps)
, 
lookup: as[k]
, 
mset_mem: mset_mem, 
list: T List
, 
assert: ↑b
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
product: x:A × B[x]
, 
equal: s = t ∈ T
, 
cdrng: CDRng
, 
rng_zero: 0
, 
rng_car: |r|
, 
oset_of_ocmon: g↓oset
, 
ocmon: OCMon
, 
grp_op: *
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
omon: OMon
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
uimplies: b supposing a
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
grp_car: |g|
, 
omral_scale: <k,v>* ps
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
pi2: snd(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
set_eq: =b
, 
cand: A c∧ B
, 
omral_dom: dom(ps)
, 
mset_inj: mset_inj{s}(x)
, 
oal_dom: dom(ps)
, 
mset_sum: a + b
, 
mk_mset: mk_mset(as)
, 
append: as @ bs
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
omon_inc, 
ocmon_subtype_omon, 
abdmonoid_dmon, 
list_induction, 
grp_car_wf, 
rng_car_wf, 
not_wf, 
exists_wf, 
assert_wf, 
mset_mem_wf, 
oset_of_ocmon_wf, 
ulinorder_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
band_wf, 
qoset_subtype_dset, 
poset_subtype_qoset, 
loset_subtype_poset, 
subtype_rel_transitivity, 
loset_wf, 
poset_wf, 
qoset_wf, 
dset_wf, 
omral_dom_wf, 
grp_op_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
rng_zero_wf, 
omral_scale_wf, 
subtype_rel_self, 
list_wf, 
set_car_wf, 
nil_wf, 
cons_wf, 
cdrng_wf, 
ocmon_wf, 
list_ind_nil_lemma, 
lookup_nil_lemma, 
list_ind_cons_lemma, 
rng_eq_wf, 
rng_times_wf, 
eqtt_to_assert, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
lookup_cons_pr_lemma, 
map_cons_lemma, 
mset_mem_inj_sum_lemma, 
iff_transitivity, 
bor_wf, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_mon_eq, 
uiff_transitivity, 
equal-wf-T-base, 
bnot_wf, 
assert_of_bnot, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
promote_hyp, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
dependent_set_memberEquality, 
productElimination, 
because_Cache, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
cumulativity, 
independent_pairFormation, 
orFunctionality, 
inrFormation, 
independent_pairEquality, 
baseClosed, 
impliesFunctionality, 
inlFormation
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.  \mforall{}v:|r|.  \mforall{}ps:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}(\mexists{}d:|g|.  ((\muparrow{}(d  \mmember{}\msubb{}  dom(ps)))  \mwedge{}  ((k  *  d)  =  k'))))  {}\mRightarrow{}  (((<k,v>*  ps)[k'])  =  0))
Date html generated:
2018_05_22-AM-07_46_50
Last ObjectModification:
2018_05_19-AM-08_27_40
Theory : polynom_3
Home
Index