Nuprl Lemma : mset_mem_inj_sum_lemma

a,y,x,s:Top.  (x ∈b mset_inj{s}(y) (y (=bx) ∨b(x ∈b a))


Proof




Definitions occuring in Statement :  mset_mem: mset_mem mset_sum: b mset_inj: mset_inj{s}(x) bor: p ∨bq top: Top infix_ap: y all: x:A. B[x] sqequal: t set_eq: =b
Definitions unfolded in proof :  all: x:A. B[x] mset_mem: mset_mem mset_inj: mset_inj{s}(x) mset_sum: b mk_mset: mk_mset(as) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_cons_lemma istype-void list_ind_nil_lemma mem_cons_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis inhabitedIsType hypothesisEquality

Latex:
\mforall{}a,y,x,s:Top.    (x  \mmember{}\msubb{}  mset\_inj\{s\}(y)  +  a  \msim{}  (y  (=\msubb{})  x)  \mvee{}\msubb{}(x  \mmember{}\msubb{}  a))



Date html generated: 2019_10_16-PM-01_06_28
Last ObjectModification: 2018_10_08-PM-00_20_21

Theory : mset


Home Index