Nuprl Lemma : omon_inc
∀x:OMon. (x ∈ AbDMon)
Proof
Definitions occuring in Statement : 
omon: OMon
, 
abdmonoid: AbDMon
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
omon_subtype, 
omon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule
Latex:
\mforall{}x:OMon.  (x  \mmember{}  AbDMon)
Date html generated:
2016_05_15-PM-00_11_00
Last ObjectModification:
2015_12_26-PM-11_43_46
Theory : groups_1
Home
Index