Nuprl Lemma : omon_inc

x:OMon. (x ∈ AbDMon)


Proof




Definitions occuring in Statement :  omon: OMon abdmonoid: AbDMon all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  omon_subtype omon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesisEquality applyEquality thin lemma_by_obid hypothesis sqequalHypSubstitution sqequalRule

Latex:
\mforall{}x:OMon.  (x  \mmember{}  AbDMon)



Date html generated: 2016_05_15-PM-00_11_00
Last ObjectModification: 2015_12_26-PM-11_43_46

Theory : groups_1


Home Index