Nuprl Lemma : omon_subtype

OMon ⊆AbDMon


Proof




Definitions occuring in Statement :  omon: OMon abdmonoid: AbDMon subtype_rel: A ⊆B
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] mon: Mon prop: all: x:A. B[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y cand: c∧ B omon: OMon abmonoid: AbMon so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T abdmonoid: AbDMon dmon: DMon
Lemmas referenced :  mon_wf comm_wf grp_car_wf grp_op_wf eqfun_p_wf grp_eq_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf eqtt_to_assert omon_properties set_wf sq_stable__comm subtype_rel_sets
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality cut introduction extract_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache lambdaEquality lambdaFormation productEquality sqequalRule applyEquality universeEquality instantiate functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation dependent_set_memberEquality imageMemberEquality baseClosed imageElimination

Latex:
OMon  \msubseteq{}r  AbDMon



Date html generated: 2017_10_01-AM-08_14_22
Last ObjectModification: 2017_02_28-PM-01_58_56

Theory : groups_1


Home Index