Nuprl Lemma : omral_times_comm_a

g:OCMon. ∀a:CDRng.  ∀[ps,qs:|omral(g;a)|].  ((ps ** qs) (qs ** ps) ∈ |omral(g;a)|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omralist: omral(g;r) uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  comm: Comm(T;op) infix_ap: y
Lemmas referenced :  omral_times_comm
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep sqequalSubstitution hypothesis

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    \mforall{}[ps,qs:|omral(g;a)|].    ((ps  **  qs)  =  (qs  **  ps))



Date html generated: 2016_05_16-AM-08_26_21
Last ObjectModification: 2015_12_28-PM-06_38_23

Theory : polynom_3


Home Index