Nuprl Lemma : omral_times_comm
∀g:OCMon. ∀a:CDRng. Comm(|omral(g;a)|;λps,qs. (ps ** qs))
Proof
Definitions occuring in Statement :
omral_times: ps ** qs
,
omralist: omral(g;r)
,
comm: Comm(T;op)
,
all: ∀x:A. B[x]
,
lambda: λx.A[x]
,
cdrng: CDRng
,
ocmon: OCMon
,
set_car: |p|
Definitions unfolded in proof :
comm: Comm(T;op)
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
dset: DSet
,
implies: P
⇒ Q
,
ocmon: OCMon
,
abmonoid: AbMon
,
mon: Mon
,
squash: ↓T
,
prop: ℙ
,
cdrng: CDRng
,
crng: CRng
,
rng: Rng
,
true: True
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
rng_mssum: rng_mssum,
omon: OMon
,
so_lambda: λ2x.t[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
bfalse: ff
,
so_apply: x[s]
,
cand: A c∧ B
,
oset_of_ocmon: g↓oset
,
dset_of_mon: g↓set
,
set_car: |p|
,
pi1: fst(t)
,
add_grp_of_rng: r↓+gp
,
grp_car: |g|
,
omralist: omral(g;r)
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
dset_list: s List
,
set_prod: s × t
,
grp_id: e
,
pi2: snd(t)
Lemmas referenced :
set_car_wf,
omralist_wf,
dset_wf,
cdrng_wf,
ocmon_wf,
omral_lookups_same_a,
omral_times_wf2,
grp_car_wf,
equal_wf,
squash_wf,
true_wf,
rng_car_wf,
lookup_omral_times,
iff_weakening_equal,
rng_mssum_swap,
oset_of_ocmon_wf,
subtype_rel_sets,
abmonoid_wf,
ulinorder_wf,
assert_wf,
infix_ap_wf,
bool_wf,
grp_le_wf,
grp_eq_wf,
eqtt_to_assert,
cancel_wf,
grp_op_wf,
uall_wf,
monot_wf,
rng_when_wf,
oset_of_ocmon_wf0,
dset_of_mon_wf0,
add_grp_of_rng_wf,
rng_times_wf,
lookup_wf,
rng_zero_wf,
omral_dom_wf,
rng_mssum_wf,
rng_mssum_functionality_wrt_equal,
rng_wf,
crng_times_comm,
mset_mem_wf,
abmonoid_comm,
abmonoid_subtype_iabmonoid,
abdmonoid_abmonoid,
ocmon_subtype_abdmonoid,
subtype_rel_transitivity,
abdmonoid_wf,
iabmonoid_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
lambdaFormation,
isect_memberFormation,
introduction,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_functionElimination,
hypothesisEquality,
applyEquality,
lambdaEquality,
setElimination,
rename,
isect_memberEquality,
axiomEquality,
because_Cache,
independent_functionElimination,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination,
instantiate,
productEquality,
cumulativity,
functionEquality,
unionElimination,
equalityElimination,
setEquality,
independent_pairFormation
Latex:
\mforall{}g:OCMon. \mforall{}a:CDRng. Comm(|omral(g;a)|;\mlambda{}ps,qs. (ps ** qs))
Date html generated:
2017_10_01-AM-10_06_32
Last ObjectModification:
2017_03_03-PM-01_13_52
Theory : polynom_3
Home
Index