Nuprl Lemma : omral_times_comm

g:OCMon. ∀a:CDRng.  Comm(|omral(g;a)|;λps,qs. (ps ** qs))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omralist: omral(g;r) comm: Comm(T;op) all: x:A. B[x] lambda: λx.A[x] cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  comm: Comm(T;op) infix_ap: y all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B dset: DSet implies:  Q ocmon: OCMon abmonoid: AbMon mon: Mon squash: T prop: cdrng: CDRng crng: CRng rng: Rng true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rng_mssum: rng_mssum omon: OMon so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t)
Lemmas referenced :  set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf omral_lookups_same_a omral_times_wf2 grp_car_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_times iff_weakening_equal rng_mssum_swap oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf rng_when_wf oset_of_ocmon_wf0 dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf lookup_wf rng_zero_wf omral_dom_wf rng_mssum_wf rng_mssum_functionality_wrt_equal rng_wf crng_times_comm mset_mem_wf abmonoid_comm abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lambdaFormation isect_memberFormation introduction hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename isect_memberEquality axiomEquality because_Cache independent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination instantiate productEquality cumulativity functionEquality unionElimination equalityElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    Comm(|omral(g;a)|;\mlambda{}ps,qs.  (ps  **  qs))



Date html generated: 2017_10_01-AM-10_06_32
Last ObjectModification: 2017_03_03-PM-01_13_52

Theory : polynom_3


Home Index