Nuprl Lemma : lookup_omral_times

g:OCMon. ∀r:CDRng. ∀ps,qs:|omral(g;r)|. ∀z:|g|.
  (((ps ** qs)[z]) (msFor{r↓+gp} x ∈ dom(ps). msFor{r↓+gp} y ∈ dom(qs). when (x y) =b z. ((ps[x]) (qs[y]))) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omral_dom: dom(ps) omralist: omral(g;r) lookup: as[k] mset_for: mset_for infix_ap: y all: x:A. B[x] equal: t ∈ T rng_when: rng_when add_grp_of_rng: r↓+gp cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_eq: =b grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q rng: Rng oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| omon: OMon and: P ∧ Q so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] guard: {T} rng_car: |r| omral_times: ps ** qs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] omral_dom: dom(ps) null_mset: 0{s} oal_dom: dom(ps) mk_mset: mk_mset(as) mset_inj: mset_inj{s}(x) mset_sum: b append: as bs set_eq: =b grp_op: * squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q mset_mem: mset_mem
Lemmas referenced :  grp_car_wf set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf omralist_ind_a equal_wf rng_car_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf omral_times_wf subtype_rel_self list_wf mset_for_wf oset_of_ocmon_wf ulinorder_wf assert_wf grp_le_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf rng_when_wf rng_times_wf add_grp_of_rng_wf omral_dom_wf list_ind_nil_lemma map_nil_lemma lookup_nil_lemma mset_for_null_lemma not_wf before_wf ocmon_subtype_omon map_wf set_prod_wf dset_of_mon_wf abdmonoid_dmon list_ind_cons_lemma map_cons_lemma lookup_cons_pr_lemma mset_for_inj_lemma omon_inc squash_wf true_wf omral_plus_wf omral_scale_wf rng_plus_wf mset_for_functionality ifthenelse_wf rng_wf ite_rw_true assert_of_mon_eq mset_mem_wf abmonoid_subtype_iabmonoid abdmonoid_abmonoid abdmonoid_wf abmonoid_wf iabmonoid_wf infix_ap_wf mon_subtype_grp_sig dmon_subtype_mon ocmon_subtype_abdmonoid dmon_wf mon_wf dset_of_mon_wf0 eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_equal ite_rw_false lookup_omral_plus omral_scale_wf2 omral_times_wf2 rng_before_imp_before_all ball_char grp_blt_wf assert_of_grp_blt mem_wf grp_lt_transitivity_2 grp_leq_weakening_eq grp_lt_irreflexivity lookup_omral_scale_c
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis introduction extract_by_obid isectElimination setElimination rename because_Cache applyEquality lambdaEquality sqequalRule instantiate setEquality cumulativity independent_isectElimination productEquality dependent_set_memberEquality productElimination functionEquality independent_functionElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry imageElimination universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation promote_hyp allFunctionality addLevel impliesFunctionality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:|omral(g;r)|.  \mforall{}z:|g|.
    (((ps  **  qs)[z])
    =  (msFor\{r\mdownarrow{}+gp\}  x  \mmember{}  dom(ps)
              msFor\{r\mdownarrow{}+gp\}  y  \mmember{}  dom(qs)
                  when  (x  *  y)  =\msubb{}  z.
                      ((ps[x])  *  (qs[y]))))



Date html generated: 2018_05_22-AM-07_46_59
Last ObjectModification: 2018_05_19-AM-08_28_26

Theory : polynom_3


Home Index