Nuprl Lemma : ite_rw_true
∀[T:Type]. ∀[b:𝔹]. ∀[x,y:T].  if b then x else y fi  = x ∈ T supposing ↑b
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
isect_memberEquality, 
axiomEquality, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:\mBbbB{}].  \mforall{}[x,y:T].    if  b  then  x  else  y  fi    =  x  supposing  \muparrow{}b
Date html generated:
2019_06_20-AM-11_31_41
Last ObjectModification:
2018_09_26-AM-11_28_09
Theory : bool_1
Home
Index