Nuprl Lemma : omral_plus_wf
∀g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.  (ps ++ qs ∈ (|g| × |r|) List)
Proof
Definitions occuring in Statement : 
omral_plus: ps ++ qs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
cdrng: CDRng
, 
rng_car: |r|
, 
ocmon: OCMon
, 
grp_car: |g|
Definitions unfolded in proof : 
omral_plus: ps ++ qs
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
and: P ∧ Q
, 
omon: OMon
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
Lemmas referenced : 
list_wf, 
grp_car_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf, 
cdrng_is_abdmonoid, 
oal_merge_wf, 
oset_of_ocmon_wf, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
band_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.    (ps  ++  qs  \mmember{}  (|g|  \mtimes{}  |r|)  List)
Date html generated:
2018_05_22-AM-07_46_36
Last ObjectModification:
2018_05_19-AM-08_26_50
Theory : polynom_3
Home
Index