Nuprl Lemma : omral_plus_wf
∀g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.  (ps ++ qs ∈ (|g| × |r|) List)
Proof
Definitions occuring in Statement : 
omral_plus: ps ++ qs, 
list: T List, 
all: ∀x:A. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
cdrng: CDRng, 
rng_car: |r|, 
ocmon: OCMon, 
grp_car: |g|
Definitions unfolded in proof : 
omral_plus: ps ++ qs, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
and: P ∧ Q, 
omon: OMon, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2], 
prop: ℙ, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
add_grp_of_rng: r↓+gp, 
grp_car: |g|
Lemmas referenced : 
list_wf, 
grp_car_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf, 
cdrng_is_abdmonoid, 
oal_merge_wf, 
oset_of_ocmon_wf, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
band_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.    (ps  ++  qs  \mmember{}  (|g|  \mtimes{}  |r|)  List)
Date html generated:
2018_05_22-AM-07_46_36
Last ObjectModification:
2018_05_19-AM-08_26_50
Theory : polynom_3
Home
Index