Nuprl Lemma : omral_plus_wf

g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.  (ps ++ qs ∈ (|g| × |r|) List)


Proof




Definitions occuring in Statement :  omral_plus: ps ++ qs list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] cdrng: CDRng rng_car: |r| ocmon: OCMon grp_car: |g|
Definitions unfolded in proof :  omral_plus: ps ++ qs all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng and: P ∧ Q omon: OMon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop: oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g|
Lemmas referenced :  list_wf grp_car_wf rng_car_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid oal_merge_wf oset_of_ocmon_wf ulinorder_wf assert_wf grp_le_wf equal_wf bool_wf grp_eq_wf band_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin productEquality setElimination rename hypothesisEquality productElimination equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality lambdaEquality applyEquality because_Cache functionEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.    (ps  ++  qs  \mmember{}  (|g|  \mtimes{}  |r|)  List)



Date html generated: 2018_05_22-AM-07_46_36
Last ObjectModification: 2018_05_19-AM-08_26_50

Theory : polynom_3


Home Index