Nuprl Lemma : omral_times_wf2

g:OCMon. ∀r:CDRng. ∀ps,qs:|omral(g;r)|.  (ps ** qs ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omralist: omral(g;r) all: x:A. B[x] member: t ∈ T cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) and: P ∧ Q dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| cand: c∧ B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cdrng: CDRng crng: CRng rng: Rng guard: {T} abdmonoid: AbDMon dmon: DMon not: ¬A loset: LOSet poset: POSet{i} qoset: QOSet
Lemmas referenced :  set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid omral_times_wf assert_wf sd_ordered_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf map_wf rng_car_wf oset_of_ocmon_wf0 not_wf mem_wf dset_of_mon_wf abdmonoid_wf rng_zero_wf dset_of_mon_wf0 omral_times_sd_ordered omral_times_non_zero_vals set_prod_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule because_Cache promote_hyp productElimination dependent_set_memberEquality independent_pairFormation productEquality instantiate cumulativity universeEquality functionEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:|omral(g;r)|.    (ps  **  qs  \mmember{}  |omral(g;r)|)



Date html generated: 2017_10_01-AM-10_06_08
Last ObjectModification: 2017_03_03-PM-01_14_14

Theory : polynom_3


Home Index