Nuprl Lemma : omral_times_non_zero_vals
∀g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.  ((¬↑(0 ∈b map(λx.(snd(x));qs))) 
⇒ (¬↑(0 ∈b map(λx.(snd(x));ps ** qs))))
Proof
Definitions occuring in Statement : 
omral_times: ps ** qs
, 
mem: a ∈b as
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
add_grp_of_rng: r↓+gp
, 
cdrng: CDRng
, 
rng_zero: 0
, 
rng_car: |r|
, 
ocmon: OCMon
, 
dset_of_mon: g↓set
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
or: P ∨ Q
, 
omral_times: ps ** qs
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rng_car: |r|
, 
pi1: fst(t)
, 
set_car: |p|
, 
dset_of_mon: g↓set
, 
grp_car: |g|
, 
add_grp_of_rng: r↓+gp
, 
pi2: snd(t)
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
grp_car_wf, 
rng_car_wf, 
list-cases, 
cdrng_is_abdmonoid, 
list_ind_nil_lemma, 
map_nil_lemma, 
mem_nil_lemma, 
not_wf, 
assert_wf, 
mem_wf, 
dset_of_mon_wf, 
abdmonoid_dmon, 
rng_zero_wf, 
subtype_rel_self, 
set_car_wf, 
dset_of_mon_wf0, 
add_grp_of_rng_wf, 
map_wf, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
subtype_rel_transitivity, 
abdmonoid_wf, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
list_ind_cons_lemma, 
nat_wf, 
list_wf, 
cdrng_wf, 
ocmon_wf, 
omral_scale_wf, 
omral_times_wf, 
omral_plus_non_zero_vals, 
omral_scale_non_zero_vals
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsTypeImplies, 
inhabitedIsType, 
productEquality, 
because_Cache, 
unionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  **  qs))))
Date html generated:
2019_10_16-PM-01_09_05
Last ObjectModification:
2018_10_08-PM-01_30_25
Theory : polynom_3
Home
Index