Nuprl Lemma : omral_times_non_zero_vals

g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.  ((¬↑(0 ∈b map(λx.(snd(x));qs)))  (¬↑(0 ∈b map(λx.(snd(x));ps ** qs))))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs mem: a ∈b as map: map(f;as) list: List assert: b pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 rng_car: |r| ocmon: OCMon dset_of_mon: g↓set grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng or: P ∨ Q omral_times: ps ** qs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B guard: {T} rng_car: |r| pi1: fst(t) set_car: |p| dset_of_mon: g↓set grp_car: |g| add_grp_of_rng: r↓+gp pi2: snd(t) cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf grp_car_wf rng_car_wf list-cases cdrng_is_abdmonoid list_ind_nil_lemma map_nil_lemma mem_nil_lemma not_wf assert_wf mem_wf dset_of_mon_wf abdmonoid_dmon rng_zero_wf subtype_rel_self set_car_wf dset_of_mon_wf0 add_grp_of_rng_wf map_wf mon_subtype_grp_sig dmon_subtype_mon subtype_rel_transitivity abdmonoid_wf dmon_wf mon_wf grp_sig_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le list_ind_cons_lemma nat_wf list_wf cdrng_wf ocmon_wf omral_scale_wf omral_times_wf omral_plus_non_zero_vals omral_scale_non_zero_vals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsTypeImplies inhabitedIsType productEquality because_Cache unionElimination productElimination equalityTransitivity equalitySymmetry applyEquality instantiate productIsType promote_hyp hypothesis_subsumption equalityIsType1 dependent_set_memberEquality_alt applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed intEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  **  qs))))



Date html generated: 2019_10_16-PM-01_09_05
Last ObjectModification: 2018_10_08-PM-01_30_25

Theory : polynom_3


Home Index