Nuprl Lemma : omral_plus_non_zero_vals
∀g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.
  ((¬↑(0 ∈b map(λx.(snd(x));ps))) ⇒ (¬↑(0 ∈b map(λx.(snd(x));qs))) ⇒ (¬↑(0 ∈b map(λx.(snd(x));ps ++ qs))))
Proof
Definitions occuring in Statement : 
omral_plus: ps ++ qs, 
mem: a ∈b as, 
map: map(f;as), 
list: T List, 
assert: ↑b, 
pi2: snd(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
add_grp_of_rng: r↓+gp, 
cdrng: CDRng, 
rng_zero: 0, 
rng_car: |r|, 
ocmon: OCMon, 
dset_of_mon: g↓set, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
ocmon: OCMon, 
omon: OMon, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y, 
so_apply: x[s], 
cand: A c∧ B, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
grp_id: e, 
pi2: snd(t), 
omral_plus: ps ++ qs
Lemmas referenced : 
oal_merge_non_id_vals, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
cdrng_wf, 
ocmon_wf, 
cdrng_is_abdmonoid
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
independent_pairFormation
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  ++  qs))))
Date html generated:
2017_10_01-AM-10_05_10
Last ObjectModification:
2017_03_03-PM-01_10_37
Theory : polynom_3
Home
Index