Nuprl Lemma : omral_plus_non_zero_vals

g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.
  ((¬↑(0 ∈b map(λx.(snd(x));ps)))  (¬↑(0 ∈b map(λx.(snd(x));qs)))  (¬↑(0 ∈b map(λx.(snd(x));ps ++ qs))))


Proof




Definitions occuring in Statement :  omral_plus: ps ++ qs mem: a ∈b as map: map(f;as) list: List assert: b pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 rng_car: |r| ocmon: OCMon dset_of_mon: g↓set grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| grp_id: e pi2: snd(t) omral_plus: ps ++ qs
Lemmas referenced :  oal_merge_non_id_vals oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf cdrng_wf ocmon_wf cdrng_is_abdmonoid
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(0  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  ++  qs))))



Date html generated: 2017_10_01-AM-10_05_10
Last ObjectModification: 2017_03_03-PM-01_10_37

Theory : polynom_3


Home Index