Nuprl Lemma : omral_times_sd_ordered
∀g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.
  ((↑sd_ordered(map(λz.(fst(z));qs))) 
⇒ (↑sd_ordered(map(λz.(fst(z));ps ** qs))))
Proof
Definitions occuring in Statement : 
omral_times: ps ** qs
, 
sd_ordered: sd_ordered(as)
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
cdrng: CDRng
, 
rng_car: |r|
, 
oset_of_ocmon: g↓oset
, 
ocmon: OCMon
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
so_apply: x[s]
, 
omral_times: ps ** qs
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
pi2: snd(t)
, 
guard: {T}
Lemmas referenced : 
list_induction, 
grp_car_wf, 
rng_car_wf, 
all_wf, 
list_wf, 
assert_wf, 
sd_ordered_wf, 
oset_of_ocmon_wf, 
ocmon_subtype_omon, 
map_wf, 
set_car_wf, 
oset_of_ocmon_wf0, 
omral_times_wf, 
list_ind_nil_lemma, 
istype-void, 
map_nil_lemma, 
sd_ordered_nil_lemma, 
cdrng_wf, 
ocmon_wf, 
list_ind_cons_lemma, 
omral_plus_sd_ordered, 
omral_scale_wf, 
omral_scale_sd_ordered
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
productElimination, 
productIsType, 
universeIsType, 
inhabitedIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
functionIsType
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));qs)))  {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));ps  **  qs))))
Date html generated:
2019_10_16-PM-01_09_02
Last ObjectModification:
2018_10_08-PM-00_42_08
Theory : polynom_3
Home
Index