Nuprl Lemma : omral_times_sd_ordered

g:OCMon. ∀r:CDRng. ∀ps,qs:(|g| × |r|) List.
  ((↑sd_ordered(map(λz.(fst(z));qs)))  (↑sd_ordered(map(λz.(fst(z));ps ** qs))))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs sd_ordered: sd_ordered(as) map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] cdrng: CDRng rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B pi1: fst(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| so_apply: x[s] omral_times: ps ** qs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt true: True pi2: snd(t) guard: {T}
Lemmas referenced :  list_induction grp_car_wf rng_car_wf all_wf list_wf assert_wf sd_ordered_wf oset_of_ocmon_wf ocmon_subtype_omon map_wf set_car_wf oset_of_ocmon_wf0 omral_times_wf list_ind_nil_lemma istype-void map_nil_lemma sd_ordered_nil_lemma cdrng_wf ocmon_wf list_ind_cons_lemma omral_plus_sd_ordered omral_scale_wf omral_scale_sd_ordered
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality_alt functionEquality dependent_functionElimination hypothesisEquality applyEquality productElimination productIsType universeIsType inhabitedIsType independent_functionElimination isect_memberEquality_alt voidElimination natural_numberEquality functionIsType

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:(|g|  \mtimes{}  |r|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));qs)))  {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}z.(fst(z));ps  **  qs))))



Date html generated: 2019_10_16-PM-01_09_02
Last ObjectModification: 2018_10_08-PM-00_42_08

Theory : polynom_3


Home Index