Nuprl Lemma : div_rem_gcd_anne

m:. n:. g:.  (GCD(m;n;g)  GCD(n;m rem n;g))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) int_nzero: all: x:A. B[x] iff: P  Q remainder: n rem m int:
Definitions :  iff: P  Q and: P  Q implies: P  Q member: t  T gcd_p: GCD(a;b;y) divides: b | a exists: x:A. B[x] nequal: a  b  T  not: A false: False all: x:A. B[x] prop: rev_implies: P  Q uall: [x:A]. B[x] int_nzero: uimplies: b supposing a sq_type: SQType(T) guard: {T}
Lemmas :  gcd_p_wf rem_to_div subtype_base_sq int_subtype_base Error :equal-wf-T-base,  divides_wf div_rem_sum equal-wf-base
\mforall{}m:\mBbbZ{}.  \mforall{}n:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}g:\mBbbZ{}.    (GCD(m;n;g)  \mLeftarrow{}{}\mRightarrow{}  GCD(n;m  rem  n;g))


Date html generated: 2013_09_05-AM-11_15_33
Last ObjectModification: 2013_08_20-PM-04_00_17

Home Index