Nuprl Lemma : Memory1-memory-class1

[Info,A,B:Type]. ∀[init:Id ─→ B]. ∀[tr:Id ─→ A ─→ B ─→ B]. ∀[X:EClass(A)].
  (Memory1(init;tr;X) memory-class1(initially initapplying tron X) ∈ EClass(B))


Proof




Definitions occuring in Statement :  Memory1: Memory1(init;tr;X) memory-class1: memory-class1 eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  eclass_wf es-E_wf event-ordering+_subtype Memory-loc-class-is-prior-State-loc-comb single-bag_wf memory-class1_wf iff_weakening_equal primed-class-opt_wf squash_wf true_wf event-ordering+_wf Id_wf bag_wf State1-state-class1 loop-class-memory-is-prior-loop-class-state eclass1_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[tr:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    (Memory1(init;tr;X)  =  memory-class1(initially  initapplying  tron  X))



Date html generated: 2015_07_22-PM-00_25_13
Last ObjectModification: 2015_02_04-PM-04_38_04

Home Index