Nuprl Lemma : Memory1-memory-class1
∀[Info,A,B:Type]. ∀[init:Id ─→ B]. ∀[tr:Id ─→ A ─→ B ─→ B]. ∀[X:EClass(A)].
  (Memory1(init;tr;X) = memory-class1(initially initapplying tron X) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
Memory1: Memory1(init;tr;X)
, 
memory-class1: memory-class1, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
Memory-loc-class-is-prior-State-loc-comb, 
single-bag_wf, 
memory-class1_wf, 
iff_weakening_equal, 
primed-class-opt_wf, 
squash_wf, 
true_wf, 
event-ordering+_wf, 
Id_wf, 
bag_wf, 
State1-state-class1, 
loop-class-memory-is-prior-loop-class-state, 
eclass1_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[tr:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    (Memory1(init;tr;X)  =  memory-class1(initially  initapplying  tron  X))
Date html generated:
2015_07_22-PM-00_25_13
Last ObjectModification:
2015_02_04-PM-04_38_04
Home
Index