Nuprl Lemma : Memory-loc-class-is-prior-State-loc-comb

[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)].
  ∀X:EClass(A). (Memory-loc-class(f;init;X) Prior(State-loc-comb(init;f;X))?init ∈ EClass(B))


Proof




Definitions occuring in Statement :  State-loc-comb: State-loc-comb(init;f;X) Memory-loc-class: Memory-loc-class(f;init;X) primed-class-opt: Prior(X)?b eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] all: x:A. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  Accum-loc-class_wf State-loc-comb_wf base_sq eclass-ext es-E_wf event-ordering+_subtype primed-class-opt_wf es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf primed-class-opt-cases es-interface-subtype_rel2 top_wf es-first_wf2 bool_wf eqtt_to_assert es-loc_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-pred_wf es-pred-locl es-causl_weakening bag_wf class-ap_wf bag-combine-single-right-as-map bag-null_wf assert-bag-null equal-empty-bag bag_combine_empty_lemma bag_size_empty_lemma lt_int_wf bag-size_wf assert_of_lt_int equal-wf-T-base bag-combine_wf bag-map_wf lifting-loc-2_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul eclass_wf event-ordering+_wf Id_wf

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    \mforall{}X:EClass(A).  (Memory-loc-class(f;init;X)  =  Prior(State-loc-comb(init;f;X))?init)



Date html generated: 2015_07_22-PM-00_23_50
Last ObjectModification: 2015_01_28-AM-10_13_45

Home Index