Step
*
2
1
3
1
1
2
of Lemma
State-comb-fun-eq
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. ¬((X es e) = {} ∈ bag(A))
10. ¬↑first(e)
11. ∀l:Id. (1 ≤ #(init l))
12. ∀l:Id. single-valued-bag(init l;B)
13. single-valued-classrel(es;X;A)
14. ↑e ∈b X
15. x : E@i
16. (x <loc e)@i
17. ↑0 <z #(State-comb(init;f;X) es x)@i
18. ∀e'':E. ((x <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(State-comb(init;f;X) es e'')))@i
19. pred(e)
= x
∈ (∃e':{E| ((e' <loc e)
           ∧ (↑0 <z #(State-comb(init;f;X) es e'))
           ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(State-comb(init;f;X) es e'')))))})
20. ¬↑first(e)
21. 0 < #(State-comb(init;f;X) es pred(e))
22. a : A@i
⊢ 0 < #(∪x1@0∈State-comb(init;f;X) es x.{f a x1@0})
BY
{ ((InstLemma `State-comb-exists` [⌈Info⌉;⌈B⌉;⌈A⌉;⌈f⌉;⌈init⌉;⌈X⌉;⌈es⌉;⌈x⌉]⋅
    THENA (Auto THEN InstHyp [⌈loc(x)⌉] (-12)⋅ THEN Auto)
    )
   THEN TrySquashExRepD (-1)
   THEN (InstLemma `bag-combine-size-bound2` [⌈B⌉;⌈B⌉;⌈λ2x1@0.{f a x1@0}⌉;⌈State-comb(init;f;X) es x⌉;⌈v⌉]⋅
         THENA MaAuto
         )
   THEN Reduce (-1)
   THEN Auto
   THEN MaAuto) }
Latex:
Latex:
1.  Info  :  Type
2.  B  :  Type
3.  A  :  Type
4.  f  :  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B
5.  init  :  Id  {}\mrightarrow{}  bag(B)
6.  X  :  EClass(A)
7.  es  :  EO+(Info)
8.  e  :  E
9.  \mneg{}((X  es  e)  =  \{\})
10.  \mneg{}\muparrow{}first(e)
11.  \mforall{}l:Id.  (1  \mleq{}  \#(init  l))
12.  \mforall{}l:Id.  single-valued-bag(init  l;B)
13.  single-valued-classrel(es;X;A)
14.  \muparrow{}e  \mmember{}\msubb{}  X
15.  x  :  E@i
16.  (x  <loc  e)@i
17.  \muparrow{}0  <z  \#(State-comb(init;f;X)  es  x)@i
18.  \mforall{}e'':E.  ((x  <loc  e'')  {}\mRightarrow{}  (e''  <loc  e)  {}\mRightarrow{}  (\mneg{}\muparrow{}0  <z  \#(State-comb(init;f;X)  es  e'')))@i
19.  pred(e)  =  x
20.  \mneg{}\muparrow{}first(e)
21.  0  <  \#(State-comb(init;f;X)  es  pred(e))
22.  a  :  A@i
\mvdash{}  0  <  \#(\mcup{}x1@0\mmember{}State-comb(init;f;X)  es  x.\{f  a  x1@0\})
By
Latex:
((InstLemma  `State-comb-exists`  [\mkleeneopen{}Info\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}init\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
    THENA  (Auto  THEN  InstHyp  [\mkleeneopen{}loc(x)\mkleeneclose{}]  (-12)\mcdot{}  THEN  Auto)
    )
  THEN  TrySquashExRepD  (-1)
  THEN  (InstLemma  `bag-combine-size-bound2`  [\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x1@0.\{f  a  x1@0\}\mkleeneclose{};\mkleeneopen{}State-comb(init;f;X)  es  x\mkleeneclose{};
              \mkleeneopen{}v\mkleeneclose{}]\mcdot{}
              THENA  MaAuto
              )
  THEN  Reduce  (-1)
  THEN  Auto
  THEN  MaAuto)
Home
Index