Nuprl Lemma : State-comb-fun-eq
∀[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  (State-comb(init;f;X)(e)
     = if e ∈b X then if first(e) then f X(e) sv-bag-only(init loc(e)) else f X(e) State-comb(init;f;X)(pred(e)) fi 
       if first(e) then sv-bag-only(init loc(e))
       else State-comb(init;f;X)(pred(e))
       fi 
     ∈ B) supposing 
     (single-valued-classrel(es;X;A) and 
     (∀l:Id. single-valued-bag(init l;B)) and 
     (∀l:Id. (1 ≤ #(init l))))
Proof
Definitions occuring in Statement : 
State-comb: State-comb(init;f;X), 
classfun: X(e), 
single-valued-classrel: single-valued-classrel(es;X;T), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-first: first(e), 
es-pred: pred(e), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ─→ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T, 
sv-bag-only: sv-bag-only(b), 
single-valued-bag: single-valued-bag(b;T), 
bag-size: #(bs), 
bag: bag(T)
Lemmas : 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
single-valued-classrel_wf, 
all_wf, 
Id_wf, 
single-valued-bag_wf, 
le_wf, 
bag-size_wf, 
nat_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf, 
bag_wf, 
bag-null_wf, 
assert-bag-null, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
eq_int_wf, 
bag_size_empty_lemma, 
es-local-pred_wf, 
lt_int_wf, 
or_wf, 
sq_exists_wf, 
es-locl_wf, 
es-locl-first, 
assert_elim, 
btrue_neq_bfalse, 
not_wf, 
rec-comb_wf, 
false_wf, 
int_seg_wf, 
select_wf, 
cons_wf, 
nil_wf, 
sq_stable__le, 
length_wf, 
length_nil, 
non_neg_length, 
length_wf_nil, 
length_cons, 
length_wf_nat, 
lelt_wf, 
lifting-2_wf, 
es-loc_wf, 
sv-bag-only-combine, 
bag-combine_wf, 
single-bag_wf, 
single-valued-classrel-implies-bag, 
member-eclass-iff-size, 
single-valued-bag-single, 
single-valued-bag-combine, 
sv-bag-only_wf, 
decidable__lt, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
bag-member-sv-bag-only, 
bag_size_single_lemma, 
bag-combine-size-bound2, 
sv-bag-only-single, 
es-first_wf2, 
bool_cases, 
assert_of_bnot, 
State-comb_wf, 
es-pred_wf, 
less_than_wf, 
assert_of_lt_int, 
iff_transitivity, 
iff_weakening_uiff, 
State-comb-single-val, 
iff_weakening_equal, 
State-comb-exists, 
squash_wf, 
true_wf, 
reduce_hd_cons_lemma, 
State-comb-exists-iff, 
not-gt-2, 
bag-member-size, 
member-eclass-iff-non-empty, 
State-comb-functional, 
btrue_wf, 
and_wf, 
isl_wf, 
bfalse_wf
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (State-comb(init;f;X)(e)
          =  if  e  \mmember{}\msubb{}  X
                  then  if  first(e)
                            then  f  X(e)  sv-bag-only(init  loc(e))
                            else  f  X(e)  State-comb(init;f;X)(pred(e))
                            fi 
              if  first(e)  then  sv-bag-only(init  loc(e))
              else  State-comb(init;f;X)(pred(e))
              fi  )  supposing 
          (single-valued-classrel(es;X;A)  and 
          (\mforall{}l:Id.  single-valued-bag(init  l;B))  and 
          (\mforall{}l:Id.  (1  \mleq{}  \#(init  l))))
Date html generated:
2015_07_22-PM-00_22_00
Last ObjectModification:
2015_02_04-PM-04_44_00
Home
Index