Nuprl Lemma : State-comb-exists
∀[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  ↓∃v:B. v ∈ State-comb(init;f;X)(e) supposing #(init loc(e)) > 0
Proof
Definitions occuring in Statement : 
State-comb: State-comb(init;f;X)
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-loc: loc(e)
, 
es-E: E
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
gt: i > j
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
bag-size: #(bs)
, 
bag: bag(T)
Lemmas : 
nat_wf, 
bag-size_wf, 
event-ordering+_subtype, 
es-loc_wf, 
bag-member-iff-size, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert-bag-null, 
eqtt_to_assert, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
bag_wf, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
bag-null_wf, 
State-comb_wf, 
classrel_wf, 
rec-combined-class-opt-1-classrel, 
squash_wf, 
es-p-local-pred_wf, 
exists_wf, 
es-E_wf, 
es-locl_wf, 
btrue_neq_bfalse, 
assert_elim, 
es-locl-first, 
primed-class-opt-classrel, 
le_weakening, 
empty-bag-iff-size, 
bag-member-empty-iff, 
bag-member_wf, 
event-ordering+_wf, 
eclass_wf, 
primed-class-opt_wf, 
bag-member-lifting-2, 
iff_weakening_equal, 
es-pred-loc-base, 
true_wf, 
gt_wf, 
es-causl_weakening, 
es-pred-locl, 
es-pred_wf, 
all_wf, 
es-causl_irreflexivity, 
es-causle_weakening, 
es-causl_transitivity2, 
es-locl_irreflexivity, 
es-le_weakening_eq, 
es-locl_transitivity2, 
es-pred_property
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    \mdownarrow{}\mexists{}v:B.  v  \mmember{}  State-comb(init;f;X)(e)  supposing  \#(init  loc(e))  >  0
Date html generated:
2015_07_22-PM-00_20_52
Last ObjectModification:
2015_07_16-AM-09_39_32
Home
Index