Nuprl Lemma : State-comb-exists

[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  ↓∃v:B. v ∈ State-comb(init;f;X)(e) supposing #(init loc(e)) > 0


Proof




Definitions occuring in Statement :  State-comb: State-comb(init;f;X) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uimplies: supposing a uall: [x:A]. B[x] gt: i > j exists: x:A. B[x] squash: T apply: a function: x:A ─→ B[x] natural_number: $n universe: Type bag-size: #(bs) bag: bag(T)
Lemmas :  nat_wf bag-size_wf event-ordering+_subtype es-loc_wf bag-member-iff-size assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert-bag-null eqtt_to_assert uiff_transitivity not_wf bnot_wf bag_wf assert_wf equal-wf-T-base bool_wf bag-null_wf State-comb_wf classrel_wf rec-combined-class-opt-1-classrel squash_wf es-p-local-pred_wf exists_wf es-E_wf es-locl_wf btrue_neq_bfalse assert_elim es-locl-first primed-class-opt-classrel le_weakening empty-bag-iff-size bag-member-empty-iff bag-member_wf event-ordering+_wf eclass_wf primed-class-opt_wf bag-member-lifting-2 iff_weakening_equal es-pred-loc-base true_wf gt_wf es-causl_weakening es-pred-locl es-pred_wf all_wf es-causl_irreflexivity es-causle_weakening es-causl_transitivity2 es-locl_irreflexivity es-le_weakening_eq es-locl_transitivity2 es-pred_property

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    \mdownarrow{}\mexists{}v:B.  v  \mmember{}  State-comb(init;f;X)(e)  supposing  \#(init  loc(e))  >  0



Date html generated: 2015_07_22-PM-00_20_52
Last ObjectModification: 2015_07_16-AM-09_39_32

Home Index