Nuprl Lemma : bag-member-lifting-2

[C,B,A:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[as:bag(A)]. ∀[bs:bag(B)]. ∀[c:C].
  uiff(c ↓∈ lifting-2(f) as bs;↓∃a:A. ∃b:B. (a ↓∈ as ∧ b ↓∈ bs ∧ (c (f b) ∈ C)))


Proof




Definitions occuring in Statement :  lifting-2: lifting-2(f) bag-member: x ↓∈ bs bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T squash: T prop: uall: [x:A]. B[x] bag-member: x ↓∈ bs so_lambda: λ2x.t[x] so_apply: x[s] lifting-2: lifting-2(f) lifting2: lifting2(f;abag;bbag) lifting-gen-rev: lifting-gen-rev(n;f;bags) lifting-gen-list-rev: lifting-gen-list-rev(n;bags) eq_int: (i =z j) select: L[n] cons: [a b] ifthenelse: if then else fi  bfalse: ff subtract: m btrue: tt all: x:A. B[x] exists: x:A. B[x] cand: c∧ B sq_stable: SqStable(P) implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sq_stable__bag-member bag-member-single single-bag_wf bag-combine_wf bag-member-combine bag_wf equal_wf and_wf exists_wf squash_wf lifting-2_wf bag-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed lemma_by_obid isectElimination applyEquality lambdaEquality because_Cache functionEquality universeEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination dependent_pairFormation independent_functionElimination

Latex:
\mforall{}[C,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[as:bag(A)].  \mforall{}[bs:bag(B)].  \mforall{}[c:C].
    uiff(c  \mdownarrow{}\mmember{}  lifting-2(f)  as  bs;\mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  (a  \mdownarrow{}\mmember{}  as  \mwedge{}  b  \mdownarrow{}\mmember{}  bs  \mwedge{}  (c  =  (f  a  b))))



Date html generated: 2016_05_15-PM-03_05_19
Last ObjectModification: 2016_01_16-AM-08_35_14

Theory : bags


Home Index