Nuprl Lemma : bag-member-lifting-2
∀[C,B,A:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[as:bag(A)]. ∀[bs:bag(B)]. ∀[c:C].
  uiff(c ↓∈ lifting-2(f) as bs;↓∃a:A. ∃b:B. (a ↓∈ as ∧ b ↓∈ bs ∧ (c = (f a b) ∈ C)))
Proof
Definitions occuring in Statement : 
lifting-2: lifting-2(f), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
bag-member: x ↓∈ bs, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
lifting-2: lifting-2(f), 
lifting2: lifting2(f;abag;bbag), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
select: L[n], 
cons: [a / b], 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtract: n - m, 
btrue: tt, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__bag-member, 
bag-member-single, 
single-bag_wf, 
bag-combine_wf, 
bag-member-combine, 
bag_wf, 
equal_wf, 
and_wf, 
exists_wf, 
squash_wf, 
lifting-2_wf, 
bag-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
independent_functionElimination
Latex:
\mforall{}[C,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[as:bag(A)].  \mforall{}[bs:bag(B)].  \mforall{}[c:C].
    uiff(c  \mdownarrow{}\mmember{}  lifting-2(f)  as  bs;\mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  (a  \mdownarrow{}\mmember{}  as  \mwedge{}  b  \mdownarrow{}\mmember{}  bs  \mwedge{}  (c  =  (f  a  b))))
Date html generated:
2016_05_15-PM-03_05_19
Last ObjectModification:
2016_01_16-AM-08_35_14
Theory : bags
Home
Index