Nuprl Lemma : bag-member-iff-size

[T:Type]. ∀[bs:bag(T)].  uiff(↓∃x:T. x ↓∈ bs;0 < #(bs))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-size: #(bs) bag: bag(T) less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: exists: x:A. B[x] bag-member: x ↓∈ bs bag-size: #(bs) all: x:A. B[x] or: P ∨ Q iff: ⇐⇒ Q implies:  Q false: False cons: [a b] top: Top guard: {T} le: A ≤ B decidable: Dec(P) not: ¬A rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True bag: bag(T) quotient: x,y:A//B[x; y] less_than: a < b length: ||as|| list_ind: list_ind nil: [] it: cand: c∧ B
Lemmas referenced :  squash_wf exists_wf bag-member_wf less_than_wf bag-size_wf nat_wf member-less_than bag_wf list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf equal-wf-base list_wf permutation_wf length_wf list-subtype-bag cons_wf l_member_wf cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination hypothesis extract_by_obid isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality imageMemberEquality baseClosed natural_numberEquality applyEquality setElimination rename productElimination independent_pairEquality isect_memberEquality because_Cache independent_isectElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination unionElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption voidEquality lambdaFormation addEquality intEquality minusEquality hyp_replacement applyLambdaEquality pointwiseFunctionalityForEquality functionEquality pertypeElimination productEquality dependent_pairFormation inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(\mdownarrow{}\mexists{}x:T.  x  \mdownarrow{}\mmember{}  bs;0  <  \#(bs))



Date html generated: 2017_10_01-AM-08_53_21
Last ObjectModification: 2017_07_26-PM-04_35_04

Theory : bags


Home Index