Nuprl Lemma : bag-combine-size-bound2
∀[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[L:bag(A)]. ∀[a:A].  #(f[a]) ≤ #(⋃a∈L.f[a]) supposing a ↓∈ L
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
bag_to_squash_list, 
sq_stable__le, 
bag-size_wf, 
bag-combine_wf, 
bag-member_wf, 
bag-member-sq-list-member, 
list-subtype-bag, 
nat_wf, 
bag-combine-size-bound, 
le_wf, 
less_than'_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
rename, 
dependent_functionElimination, 
independent_isectElimination, 
setElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
voidElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[L:bag(A)].  \mforall{}[a:A].    \#(f[a])  \mleq{}  \#(\mcup{}a\mmember{}L.f[a])  supposing  a  \mdownarrow{}\mmember{}  L
Date html generated:
2016_10_25-AM-10_28_31
Last ObjectModification:
2016_07_12-AM-06_44_21
Theory : bags
Home
Index