Nuprl Lemma : single-valued-bag-combine

[A,B:Type]. ∀[as:bag(A)]. ∀[f:A ⟶ bag(B)].
  (single-valued-bag(⋃x∈as.f[x];B)) supposing ((∀a:A. single-valued-bag(f[a];B)) and single-valued-bag(as;A))


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) bag-combine: x∈bs.f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a single-valued-bag: single-valued-bag(b;T) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q squash: T exists: x:A. B[x] prop:
Lemmas referenced :  bag-member-combine and_wf equal_wf bag_wf bag-member_wf bag-combine_wf all_wf single-valued-bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity hypothesis productElimination independent_isectElimination imageElimination dependent_functionElimination independent_functionElimination dependent_set_memberEquality independent_pairFormation setElimination rename setEquality equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].
    (single-valued-bag(\mcup{}x\mmember{}as.f[x];B))  supposing 
          ((\mforall{}a:A.  single-valued-bag(f[a];B))  and 
          single-valued-bag(as;A))



Date html generated: 2016_10_25-AM-10_29_28
Last ObjectModification: 2016_07_12-AM-06_45_26

Theory : bags


Home Index