Nuprl Lemma : sv-bag-only-combine
∀[A,B:Type]. ∀[b:bag(A)]. ∀[f:A ⟶ bag(B)].
  (sv-bag-only(⋃x∈b.f[x]) = sv-bag-only(f[sv-bag-only(b)]) ∈ B) supposing 
     ((∀a:A. 0 < #(f[a])) and 
     (∀a:A. single-valued-bag(f[a];B)) and 
     0 < #(b) and 
     single-valued-bag(b;A))
Proof
Definitions occuring in Statement : 
sv-bag-only: sv-bag-only(b)
, 
single-valued-bag: single-valued-bag(b;T)
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
true: True
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
single-valued-bag: single-valued-bag(b;T)
, 
sq_or: a ↓∨ b
, 
similar-bags: similar-bags(A;as;bs)
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bag-member-sv-bag-only, 
bag-member-implies-hd-append, 
sv-bag-only_wf, 
single-valued-bag-combine, 
bag-combine-size-bound2, 
decidable__lt, 
bag-size_wf, 
bag-combine_wf, 
nat_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
single-bag_wf, 
single-valued-bag_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
bag-member_wf, 
bag-combine-single-left, 
all_wf, 
less_than_wf, 
bag_wf, 
equal_wf, 
bag-combine-append-left, 
sv-bag-only-append, 
bag-member-append, 
bag-size-bag-member, 
sq_stable__bag-member, 
bag-member-size, 
bag-member-combine
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
cumulativity, 
imageElimination, 
productElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
independent_pairFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
productEquality, 
lambdaFormation, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].
    (sv-bag-only(\mcup{}x\mmember{}b.f[x])  =  sv-bag-only(f[sv-bag-only(b)]))  supposing 
          ((\mforall{}a:A.  0  <  \#(f[a]))  and 
          (\mforall{}a:A.  single-valued-bag(f[a];B))  and 
          0  <  \#(b)  and 
          single-valued-bag(b;A))
Date html generated:
2017_10_01-AM-08_55_59
Last ObjectModification:
2017_07_26-PM-04_38_01
Theory : bags
Home
Index