Nuprl Lemma : bag-member-implies-hd-append

[T:Type]. ∀[x:T]. ∀[b:bag(T)].  ↓∃c:bag(T). (b ({x} c) ∈ bag(T)) supposing x ↓∈ b


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-append: as bs single-bag: {x} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] squash: T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T exists: x:A. B[x] prop: bag-member: x ↓∈ bs and: P ∧ Q l_member: (x ∈ l) cand: c∧ B nat: subtype_rel: A ⊆B single-bag: {x} bag-append: as bs append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B int_iseg: {i...j}
Lemmas referenced :  bag_to_squash_list bag-member_wf reject_wf list-subtype-bag list_ind_cons_lemma list_ind_nil_lemma quotient-member-eq list_wf permutation_wf permutation-equiv cons_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf bag_wf bag-append_wf single-bag_wf squash_wf exists_wf permutation_inversion permutation-cons firstn_nth_tl_decomp lelt_wf length_wf firstn_wf nth_tl_wf append_wf permutation_weakening reject_eq_firstn_nth_tl length-append length_firstn length_of_cons_lemma intformless_wf int_formula_prop_less_lemma le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality cumulativity rename dependent_pairFormation setElimination applyEquality independent_isectElimination lambdaEquality sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality unionElimination int_eqEquality intEquality independent_pairFormation computeAll independent_functionElimination imageMemberEquality baseClosed equalityTransitivity universeEquality dependent_set_memberEquality addEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    \mdownarrow{}\mexists{}c:bag(T).  (b  =  (\{x\}  +  c))  supposing  x  \mdownarrow{}\mmember{}  b



Date html generated: 2017_10_01-AM-08_55_47
Last ObjectModification: 2017_07_26-PM-04_37_53

Theory : bags


Home Index