Nuprl Lemma : reject_eq_firstn_nth_tl

[T:Type]. ∀[L:T List]. ∀[i:ℕ||L||].  (L\[i] firstn(i;L) nth_tl(1 i;L))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| reject: as\[i] nth_tl: nth_tl(n;as) append: as bs list: List int_seg: {i..j-} uall: [x:A]. B[x] add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  btrue: tt bfalse: ff tl: tl(l) pi2: snd(t) subtract: m le: A ≤ B uiff: uiff(P;Q) firstn: firstn(n;as) bool: 𝔹 unit: Unit assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf length_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma int_seg_properties decidable__or equal-wf-base decidable__lt intformor_wf int_formula_prop_or_lemma cons_wf list_wf first0 subtype_rel_list top_wf list_ind_nil_lemma reject_cons_hd_sq false_wf reject_cons_tl_sq add-is-int-iff lelt_wf list_ind_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int le_int_wf assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality pointwiseFunctionality baseApply closedConclusion equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||L||].    (L\mbackslash{}[i]  \msim{}  firstn(i;L)  @  nth\_tl(1  +  i;L))



Date html generated: 2017_04_17-AM-08_48_56
Last ObjectModification: 2017_02_27-PM-05_07_44

Theory : list_1


Home Index