Nuprl Lemma : bag-size-bag-member

[T:Type]. ∀[bs:bag(T)].  (0 < #(bs) ⇐⇒ ↓∃b:T. b ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-size: #(bs) bag: bag(T) less_than: a < b uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q squash: T exists: x:A. B[x] prop: subtype_rel: A ⊆B bag-size: #(bs) bag-member: x ↓∈ bs uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] nat: rev_implies:  Q bag: bag(T) quotient: x,y:A//B[x; y] guard: {T} or: P ∨ Q cons: [a b] top: Top decidable: Dec(P) uiff: uiff(P;Q) subtract: m true: True
Lemmas referenced :  bag_to_squash_list less_than_wf bag-size_wf select_wf false_wf select_member lelt_wf length_wf l_member_wf list-subtype-bag equal_wf bag_wf squash_wf exists_wf list_wf bag-member_wf nat_wf member-less_than member-permutation list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel member_wf permutation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality cumulativity applyEquality because_Cache sqequalRule rename dependent_pairFormation independent_isectElimination dependent_functionElimination dependent_set_memberEquality lambdaEquality productEquality imageMemberEquality baseClosed setElimination independent_pairEquality isect_memberEquality universeEquality pertypeElimination independent_functionElimination unionElimination voidElimination hypothesis_subsumption voidEquality addEquality intEquality minusEquality equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    (0  <  \#(bs)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}b:T.  b  \mdownarrow{}\mmember{}  bs)



Date html generated: 2017_10_01-AM-08_54_49
Last ObjectModification: 2017_07_26-PM-04_36_40

Theory : bags


Home Index